
Surface Reconstruction using the Level Set Method

CS 870 Project

Instructor: Justin Wan

Author: Egor Larionov (20263767)

University of Waterloo

February 14, 2014

Abstract

This project reintroduces a level set surface reconstruction method presented in [1]. This
method attempts to fit a smooth surface to a set of data points using surface evolution through
a level set PDE. The main idea is to evolve a surface enclosing a set of data points by minimizing
its surface area and its distance to the point set. A particular implementation of this method
is presented, and a few implementation issues are outlined. Finally a set of simulations are
presented comparable to results found in [1].

1 Introduction

Surface reconstruction is a difficult problem, studied for as long as there existed digital represen-
tations of surfaces. The goal of this problem is to obtain a smooth representation of a 2D or 3D
surface given some unorganized, noisy, or damaged data set. In many applications the data set
contains a set of disconnected points approximating a surface in three dimensions. For instance, in
medical imaging, it is often desired to construct a 3D model of the brain or some other organ for
analysis. A set of 2D digital scans may be organized in 3D space as a set of data points representing
segmented 2D regions. These points can be fed into a surface reconstruction algorithm, that may
be able to approximate the desired 3D model.

There are many other applications for surface reconstruction. In data visualization, a smooth
surface can be used to interpolate a discretized function. In physical modelling, a perfectly closed
surface is required, so that a tessellation algorithm can discretize its interior in preparation for a
physical simulation (e.g. the finite element method requires such a tessellation and is often used to
model soft bodies). Even the result of a 3D scan may need to be repaired due to noisy input data
or missing information using a surface reconstruction algorithm.

In this project I present a particular method for surface reconstruction introduced by Zhao et.
al. in [1]. I present a walkthrough of the model and the level set formulation used in this method,
followed by a detailed description of used algorithms and an outline of various implementation
difficulties encountered. Finally, a few simulations of the algorithms are shown at the end.

2 Model

Let S denote a set of data points1, to which we would like to fit a smooth surface, Γ ⊂ Ω. Let
Ω ⊂ R3, be a compact domain, with S ⊂ Ω closed. The distance function d : Ω→ R, representing
the distance from each point in Ω to S, is then defined by

d(x) := dist(x,S) = inf
p∈S
‖x− p‖2 (2.1)

The ideal Γ = Γ′ would be as close as possible to the data set, while maintaining smoothness.
Therefore we need to find a functional on Γ that has a minimum at Γ′. One such functional is

E(Γ) =

(∫
Γ

dp(x)ds

) 1
p

,

where ds is a surface area element and p ∈ (0,∞) is a parameter. This functional can be interpreted
as the surface energy where d is the potential at each point on Γ. In addition E(Γ) is the Lp norm
of d restricted to Γ, that is

E(Γ) = ‖ d|Γ ‖Lp .

To minimize E, we need to compute the first variation of E:

δE(Γ)

δΓ
=

1

p

(∫
Γ

dp(x)ds

) 1
p
−1 (

pdp−1∇ · n + dpκ
)
,

where n is the normal to the surface, and κ is the mean curvature. Setting this to zero gives us the
Euler-Lagrange equation

dp−1(x)

(
∇d(x) · n +

1

p
d(x)κ

)
= 0. (2.2)

1Curves and surface patches can also be included in S

1

The solution to this PDE is hidden in n and κ which essentially define the goal surface, Γ. At
points where Γ doesn’t touch S, we have

∇d(x) · n = −1

p
d(x)κ, (2.3)

an equilibrium between the potential force ∇d(x) ·n (if interpreted as the change in potential) and
surface tension, d(x)κ. This is precisely the property our ideal surface needs. The surface tension
maintains smoothness of the surface, while the potential force pushes the surface closer the data
set. From (2.3), we can see that p also affects the flexibility of the surface, where a larger p will
increase the flexibility of the surface regardless of its distance from S.

2.1 Level Set Formulation

In order to evolve a surface towards the target minimum of E(Γ), we can use the gradient descent
of E, which gives us a continuous deformation of Γ. So given some initial surface Γ0, we evolve it
in time according to the gradient flow

dΓ

dt
= −1

p

(∫
Γ

dp(x)ds

) 1
p
−1

∇ · (dp(x)n)n

= −
(∫

Γ

dp(x)ds

) 1
p
−1

dp−1(x)(∇d(x) · n +
1

p
d(x)κ)n

= −
(
d(x)

E(Γ)

)p−1

(∇d(x) · n +
1

p
d(x)κ)n (2.4)

Note that for large p, the surface becomes too flexible, and takes a longer time to converge. Em-
pirically, it is witnessed [1] that p = 2 provides good results, in general.

Given this gradient flow, we can finally construct the level set PDE. Fix a time t ∈ R+, and let
Γ(t) be a 2-dimensional closed surface in Ω. Let Γ+(t) denote the inside of the surface, and Γ−(t)
denote the outside. Then we define an implicit function u : Ω× R+ → R as follows

u(x, t) > 0 in Γ+(t)

u(x, t) = 0 on Γ(t)

u(x, t) < 0 in Γ−(t)

Thus Γ(t) is the zero level set of u. Differentiating u(Γ(t), t) with respect to t gives the level set
PDE:

ut +
dΓ(t)

dt
· ∇u = 0. (2.5)

The solution to (2.5) gives us the implicit function, whose zero level set is precisely the desired
surface Γ′. We can now express the energy functional in terms of u:

E(u) =

(∫
Ω

dp(x)δ(u(x))|∇u(x)|dx
) 1

p

, (2.6)

where δ(x) is the one dimensional Delta function, and δ(u(x))|∇u(x)|dx is a surface area element
at Γ. Note that we can now express the normal n and mean curvature κ of Γ in terms of u as
follows

n = ∇u
|∇u| , κ = ∇ · ∇u|∇u| .

2

Thus equations (2.4) and (2.5) give

ut =

(
d

E(u)

)p−1 (
∇d · n + 1

p
dκ
)
n · ∇u

=

(
d

E(u)

)p−1 (
∇d · ∇u+ 1

p
dκ|∇u|

)
, (2.7)

which is a level set PDE of the form

ut = v · ∇u+ ακ|∇u|

where v defines the external velocity field (in the direction of ∇d) and ακ|∇u| is the parabolic
curvature term. The discretization and computation of such an equation is carefully treated in [2].

2.2 Narrow Band Method

Since we are usually only interested in the zero level set of u, it is wasteful to compute values
of u on the whole domain Ωd. Instead, at nth time step, we solve the level set equation on a
subset of T n ⊂ Ωd, where T n := {x : |un(x)| < γ}. We chose γ = 4h to insure that there are
enough neighbouring grid points with correct values for un near the zero level set, so that higher
order derivatives can be used2. Note that γ = 2h would be enough, however, to avoid numerical
oscillations at the boundary of T n, we modify the level set equation (2.5) to

ut + c(u)dΓ
dt
· ∇u = 0 (2.8)

where c(u) is the cut-off function:

c(u) =

1 if |u| ≤ β
(|u| − γ)2(2|u|+ γ − 3β)/(γ − β)3 if β < |u| ≤ γ
0 if |u| > γ

so that β is chosen to be 2h.

2.3 Reinitialization

Evolve the implicit function u according to (2.8), may cause steep or flat slopes to develop near
the boundary of T n. In general, u may deviate from being a distance function with the same zero
level set. It has been observed that having |∇u| close to 1 within T n gives better results for surface
evolution [2, 3, 1]. A proposed solution is to introduce an auxiliary time based PDE that will
normalize |∇u| as desired. In particular, after some time t, when |∇u| deviates enough from 1, to
solve the PDE {

φτ + S(φ)(|∇φ| − 1) = 0
φ(x, 0) = u(x, t)

(2.9)

where S(φ) is the sign function, approximated by

S(φ) =
φ√

φ2 + |∇φ|2∆x2
. (2.10)

2Additionally, Hamilton-Jacobi ENO and WENO discretization schemes may use values farther from the zero
level set.

3

As suggested in [3], this approximation prevents this PDE from moving the zero level set. This
is a general problem with other approximations, such as S(φ) = φ/

√
φ2 + ε2 for small ε > 0, as

presented by [4]. A disadvantage of (2.10) is that it depends on |∇φ|, which must be computed
before each reinitialization iteration.

3 Implementation

First we will introduce a few assumptions and definitions to be used in this section.
For simplicity, assume that S contains only points. There are ways of extending S to contain

curve and surface patches, however point sets are often sufficient in most applications to surface
reconstruction.

Assume that our domain is a unit cube, Ω = [0, 1]3. Define Ωd ⊂ Ω to be a grid discretization
of the domain, containing N grid points, and so N − 1 grid cells. Since the domain is a unit cube,
all dimensions have equal length divisions, h = 1/(N − 1), so ∆x = ∆y = ∆z = h. An implicit
function u : Ω → R is discretized on Ωd, and we denote the value of u at each grid point by
ui,j,k = u(xi, yj, zk), where (xi, yj, zk) ∈ Ωd. Time evolution is also discretized by a time step ∆t.
At nth iteration, where t = n∆t, we denote the value of u by un = u(t).

3.1 Computing the Distance to the Data

Many algorithms have been developed to compute the function d as defined in (2.1), efficiently.
More accurate methods often use Voronoi diagrams [5], other less accurate, but faster techniques
use PDE formulations [1]. There exist, however, a few optimized, hybrid algorithms [6] to compute
d. Since it is sufficient for us to know a rough approximation to the distance function, we will focus
on the implementation of an iterative method for solving the eikonal PDE:{

|∇d(x)| = 1
d(x) = 0 ∀x ∈ S (3.1)

where | · | denotes the Euclidean norm. The viscosity solution for d(x) ≥ 0 can be solved [7] using
the Godunov Hamiltonian discretization of |∇d| :

HG =
√

(Dx)2 + (Dy)2 + (Dz)2 (3.2)

where

Dx = max(max(Dx
−, 0),−min(Dx

+, 0))2,

Dy = max(max(Dy
−, 0),−min(Dy

+, 0))2,

Dz = max(max(Dz
−, 0),−min(Dz

+, 0))2,

Dx
± =

di,j,k − di±1,j,k

h
, Dy

± =
di,j,k − di,j±1,k

h
, and Dz

± =
di,j,k − di,j,k±1

h

are forward and backward differencing partial derivative approximations. Along with a clever
iterative method, solving

HG = 1, (3.3)

4

is usually called the fast sweeping method [6]; it has been previously used in level set schemes [8].
This method is O(h) accurate. To illustrate how we solve equation (3.3), we will use the following
values

xmin := min(di−1,j,k, di+1,j,k), ymin := min(di,j−1,k, di,j+1,k), zmin := min(di,j,k−1, di,j,k+1).

First, rewrite (3.2) as

HG =
1

h

√
max(0, di,j,k − xmin)2 + max(0, di,j,k − ymin)2 + max(0, di,j,k − zmin)2, (3.4)

where it is clear that partial derivative approximations use the values closer to the data set. A good
initial guess for the distance function can be large everywhere except at grid points di,j,k near S,
where we compute the exact values for the distance function. Then we can solve (3.3) by iteratively
updating the di,j,k values3 using the most recently updated neighbouring values. First, let a1, a2,
and a3 be the values xmin, ymin, and zmin in sorted order, and define a4 = ∞. Then we follow a
simple algorithm4 as follows.

1. Let i = 1.

2. If d′ := ai + h ≤ ai+1, then assign d̄ = d′. Otherwise compute

d′ :=
ai + ai+1 +

√
2h2 − (ai+1 − ai)2

2
,

and if d′ ≤ ai+2, then assign d̄ = d′,

3. If d̄ is still unassigned, then increment i by 1, and go to step 2.

4. Otherwise simply update our distance function, d
(new)
i,j,k ← min(d̄, d

(old)
i,j,k), using the previously

computed, d
(old)
i,j,k .

Note that in our case a4 =∞ so we would increment i at most once, however this algorithm works
for n-dimensions for any n. This type of non-linear Gauss-Seidel iteration is performed in 8 sweeps
with the following orders

1. i = 1 : n, j = 1 : n, k = 1 : n 5. i = n : 1, j = n : 1, k = 1 : n
2. i = n : 1, j = 1 : n, k = 1 : n 6. i = 1 : n, j = n : 1, k = n : 1
3. i = 1 : n, j = n : 1, k = 1 : n 7. i = n : 1, j = 1 : n, k = n : 1
4. i = 1 : n, j = 1 : n, k = n : 1 8. i = n : 1, j = n : 1, k = n : 1

followed by a sweep with an arbitrary order.
This algorithm produces good results near the data points, and becomes increasingly more

inaccurate farther from the data. This is not a significant problem if the initial surface is close to
the data set, and with the narrow band method developed in [3, 10], we never compute values of
the implicit function far from the data. The comparison of various PDE solutions for the distance
function is shown in Figure 3.1.

3Of course there is no need to update grid points with exact distance values.
4See [9] a more detailed analysis of this method.

5

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Given point set S. (b) Exact distance function for com-
parison.

(c) 1 cycle of 8 sweeps + 1 random
sweep.

Figure 3.1: The computed distance function on a 32x32x32 grid with 214 data points aligned in a sphere
centred at (0.5, 0.5, 0.5) with radius 0.2. The tops of the shells were clipped to expose the internal structure
of the distance function. The colours of the shells represent their distance from the data set, in descending
order: red → green → blue, where blue is closest to the data set. This example shows that the computed
distance function closely approximates the true distance function. Furthermore, increasing the number of
sweep cycles does not affect the approximation much.

3.2 Initial Surface

To perform curve evolution, we need an initial surface to start. To reduce the time for the solution
to converge, and avoid room for errors, it is desirable to start with a surface close to the data set.
One way to accomplish this is to construct a shell, ε > 0 away from S, enclosing all points in S,
and use it as the initial surface Γ0. Note that if ε is too small, then the initial surface will collapse
into the data set, i.e. will not resolve the desired Γ′ but another global minimum of E(Γ). So we
must find an appropriate ε from what we know about S. To maintain generality of the method, we
can’t assume anything about the set S, however we may inquire about its minimum local feature
size l and the maximum distance between two neighbouring data points r. A simple algorithm
(Algorithm 1 in Appendix A) approximates l and r as the smallest and largest distance between
every pair of neighbouring points in S respectively. Note that if l > r/2, then S is a fairly uniform
sampling, and we can choose l > ε > r/2. This will insure that the initial surface will “resolve”
small local features since l > ε however be large enough to maintain a connectivity between all
neighbouring points since ε > r/2. If l < r/2, then we may need to choose an ε that changes
according to local feature size. In practice it seems to be favourable to choose a larger ε since
Algorithm 1 underestimates r for complex surfaces.

Computing the initial surface is a simple tagging process followed by solving the eikonal equation
(3.1). In particular, we follow the algorithm prescribed in [1]:

Starting from the corner at (i, j, k) = (1, 1, 1), we perform a depth (or breadth) first search
through the grid. We label each visited grid point (i, j, k) as discovered, and if di,j,k > ε, then
we recurse on each neighbour of (i, j, k), otherwise we do nothing. For the undiscovered points
(the interior of the surface) we solve the eikonal equation for −d (using the fast sweeping method
mentioned above), where the values di,j,k at each discovered grid point give the initial condition.
Then u0 is the negative of the resulting solution.

Excluding the computation of l and r, it takes O(N3) steps to compute u0. The complexity is
dominated by the depth (or breadth) first search, since solving the eikonal equation takes a constant

6

number iterations.

3.3 Curve Evolution

Putting everything together, we get the following equation for (2.8) and (2.7):

ut(x) = c(u)

(
d(x)

E(Γ)

)p−1

∇d(x) · ∇u(x)︸ ︷︷ ︸
(∗)

+ 1
p
d(x)κ|∇u(x)|︸ ︷︷ ︸

(∗∗)

 (3.5)

where we already have d(x) = di,j,k for each grid point. The energy is computed as in (2.6), where

δi,j,k =

{
1
2ε

(1 + cos (πui,j,k/ε)) if − ε < ui,j,k < ε
0 otherwise

and ∇u in (2.6) and (∗∗) is computed using central differencing, ∇u ≈ (ux, uy, uz), where

ux =
ui+1,j,k − ui−1,j,k

2h
, ux =

ui,j+1,k − ui,j−1,k

2h
, uz =

ui,j,k+1 − ui,j,k−1

2h
, (3.6)

and so |∇u| ≈
√
u2
x + u2

y + u2
z. The integral in (2.6) is approximated using trapezoid rule over each

dimension. The gradient ∇d = (dx, dy, dz) is computed once using a central differencing (same as
(3.6)) over the whole grid Ωd. The ∇u(x) term in (∗) above, is computed using a second order
ENO scheme as developed in [11] and described in [2, §3.3] where ∇d(x) is the external velocity
field. Finally the curvature term in (∗∗) is computed as prescribed in [2, §1.4].

The time variation in (3.5) is computed using a two stage Runge-Kutta scheme (Heun’s method)
as follows:

ũn+1 = un + ∆tL(un)

un+1 = un + ∆t
2

(
L(un) + L(ũn+1)

)
where L is simply the RHS of (3.5). The time step ∆t is chosen empirically based on the resolution,
such that the CFL condition, ∆t|dΓ

dt
| < h is satisfied.

We update uni,j,k only if (i, j, k) ∈ T n. The narrow band T n is computed by tagging each grid
point with a 2, and keeping an array of indices of tagged grid points. This way to update ui,j,k, we
only need to iterate through the array. This take O(N2) steps given that the surface is not “dense”
in Ω, i.e. it doesn’t occupy most of Ω.

The reinitialization step must be performed on a region containing T n. Since the surface advances
no further than one grid point during the evolution step, it is sufficient to update u on T n and its
neighbouring grid points. The above tagging algorithm can be used to tag these values as 1 to
differentiate them from the main band. The PDE (2.9) is solved with Euler time discretization,
and Godunov’s spatial discretization as follows:

φn+1
i,j,k = φni,j,k +

∆τ

h

(
max(0, si,j,k)

(
1−

√
D1

)
+ min(0, si,j,k)

(
1−

√
D2

))
,

where si,j,k is a straight forward approximation of (2.10), and

D1 := max(max(0, φ−x),−min(0, φ+
x))2

+ max(max(0, φ−y),−min(0, φ+
y))2

+ max(max(0, φ−z),−min(0, φ+
z))2

and
D2 := max(max(0, φ+

x),−min(0, φ−x))2

+ max(max(0, φ+
y),−min(0, φ−y))2

+ max(max(0, φ+
z),−min(0, φ−z))2

7

where φ+
x and φ−x are the one-sided differences:

φ+
x =

φi+1,j,k − φi,j,k
h

, and φ−x =
φi,j,k − φi−1,j,k

h
,

and φ±y , φ±z follow in the same fashion. Alternatively one can use an ENO [11] or WENO [12]
scheme to approximate these differences.

4 Implementation Issues

A few As Γ touches the data set S, the curvature term in our PDE is undefined. This is easily fixed
by setting κ = 0, since Γ should not move further.

Unfortunately the ε used in the determining the thickness of the initial surface was constant and
was chosen manually. This substantially increased the time of convergence of the level set method.
In a future implementation, this is an important issue to be addressed.

More careful investigation of the function at the boundary of the narrow band can reveal whether
or not we can reduce its thickness, and thus improve the performance of this method by a constant
factor. Certainly we need not maintain many values outside the propagating front since it always
moves inward, towards the data set.

The reinitialization step has proven to be very valuable, since without it, the resulting surface
is very irregular and noisy.

5 Results

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Given point set S (b) Initial surface (c) 20 iterations (d) 40 iterations

(e) Initial surface (f) 15 iterations (g) 20 iterations (h) 40 iterations

Figure 5.1: Surface reconstruction of a sphere with radius 0.2 on a 32x32x32 grid with 214 data points.
The narrow band contained approximately 8000 points, as opposed to 32 × 32 × 32 = 32768. In the first
row, (b), (c), and (d), show evolution without reinitialization. In the second row, (e), (f), (g), and (h)
show evolution with reinitialization triggered when the gradient deviated far enough from 1. Note the
developing kinks in the surface of (d) as the gradient increased throughout evolution.

8

With this implementation, simple surfaces tend to converge to the their respective data sets fast
(few iterations), and accurately even with a relatively high ∆t.

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Given data S (b) Initial surface (c) 45 iterations (d) 95 iterations

Figure 5.2: Surface reconstruction of two linked tori on a 49x49x49 grid with 766 data points.

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Given data S (b) Initial surface (c) 10 iterations (d) 20 iterations

Figure 5.3: Surface reconstruction of the “cow” on a 60x60x60 grid with 2903 data points.

Unfortunately there was not enough time for the above to examples to converge to their respec-
tive data sets. As a result, a relatively large time step was used to push the surface to the data as
quickly as possible, which sometimes left the CFL condition unsatisfied.

6 Conclusions

In conclusion, I was able to successfully implement the proposed (in [1]) surface reconstruction
algorithm without much difficulty. However it is intractable to simulate this implementation on a
grid larger than 60x60x60. New variational methods for surface reconstruction have been proposed
since the conception of the paper [1]. In particular, [13] (2010) uses total variation based functionals,
and [14] (2012), which uses the Multigrid PDE method while employing the narrow band idea
presented here.

9

References

[1] H.-K. Zhao, S. Osher, B. Merriman, and M. Kang. Implicit and nonparametric shape recon-
struction from unorganized data using a variational level set method. Computer Vision and
Image Understanding, 80(3), pp. 295–314 (2000).

[2] S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces, vol. 153. Springer
(2003).

[3] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang. A pde-based fast local level set
method. Journal of Computational Physics, 155(2), pp. 410 – 438 (1999). ISSN 0021-9991.
doi:http://dx.doi.org/10.1006/jcph.1999.6345.

[4] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incom-
pressible two-phase flow. Journal of Computational physics, 114(1), pp. 146–159 (1994).

[5] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial tessellations: concepts and applica-
tions of Voronoi diagrams, vol. 501. Wiley. com (2009).

[6] Y.-h. R. Tsai. Rapid and accurate computation of the distance function using grids. Journal of
Computational Physics, 178(1), pp. 175–195 (2002).

[7] E. Rouy and A. Tourin. A viscosity solutions approach to shape-from-shading. SIAM Journal
on Numerical Analysis, 29(3), pp. 867–884 (1992). doi:10.1137/0729053.

[8] J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proceedings
of the National Academy of Sciences, 93(4), pp. 1591–1595 (1996).

[9] H. Zhao. A fast sweeping method for eikonal equations. Mathematics of computation, 74(250),
pp. 603–627 (2005).

[10] H.-K. Zhao, T. Chan, B. Merriman, and S. Osher. A variational level set approach to multiphase
motion. Journal of Computational Physics, 127(1), pp. 179 – 195 (1996). ISSN 0021-9991. doi:
http://dx.doi.org/10.1006/jcph.1996.0167.

[11] S. Osher and C. Shu. High-order essentially nonoscillatory schemes for hamiltonjacobi equa-
tions. SIAM Journal on Numerical Analysis, 28(4), pp. 907–922 (1991). doi:10.1137/0728049.

[12] G. Jiang and D. Peng. Weighted eno schemes for hamilton–jacobi equations. SIAM Journal on
Scientific Computing, 21(6), pp. 2126–2143 (2000). doi:10.1137/S106482759732455X.

[13] J. Ye, X. Bresson, T. Goldstein, and S. Osher. A fast variational method for surface recon-
struction from sets of scattered points. CAM Report, 10(01) (2010).

[14] J. Ye, I. Yanovsky, B. Dong, R. Gandlin, A. Brandt, and S. Osher. Multigrid narrow band
surface reconstruction via level set functions. In Advances in Visual Computing, pp. 61–70.
Springer (2012).

All code is written entirely by me, and is provided purely for reference. All code used to generate
images appearing in this document can be found in:

http://www.egorlarionov.com/static/cs870/cs870proj.tar.gz

10

http://www.egorlarionov.com/static/cs870/cs870proj.tar.gz

A Algorithms

The following algorithm was used to compute the minimum local feature size l and the maximum
distance between two neighbouring data points r.

1: l←∞
2: r ← 0
3: for p ∈ S do
4: s←∞
5: for q ∈ S, q 6= p do
6: if ‖p− q‖ < s then
7: s = ‖p− q‖
8: end if
9: end for

10: if s < l then
11: l← s
12: end if
13: if s > r then
14: r ← s
15: end if
16: end for

Algorithm 1: Computing local information about the input data set S.

11

	Introduction
	Model
	Level Set Formulation
	Narrow Band Method
	Reinitialization

	Implementation
	Computing the Distance to the Data
	Initial Surface
	Curve Evolution

	Implementation Issues
	Results
	Conclusions
	Algorithms

