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Summary

I Take a set of points S

I Wrap S with some smooth surface Γ, not too far away

I Evolve the surface minimizing its surface area (SA) and its
distance from the data (dist.).
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Introduction

Need to reconstruct poorly formed shapes for:

I Medical imaging (e.g. get 3D organ model from 2D scans),

I Data visualization (e.g. interpolate data with a surface),

I Computer vision (e.g. approx. surface given data points),

I Physical modelling (e.g. need perfectly closed surfaces),

I 3D scanning (e.g. repair poorly scanned 3D images)
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Introduction

Problems encountered:

1. Data point connections unknown,

2. Shape topology unknown.

Two approaches:
I Parametric

I e.g. Delaunay triangulations or Voronoi diagrams
I e.g. PDE based methods exist
I in either case, difficult to handle the two problems above

I Non-parametric (implicit surfaces)
I Level Set Method [2]
I get shape topology for free
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Introduction

Authors’ approach:
Minimize an energy functional that balances:

I Surface area (elastic energy)

I Distance to data (potential energy)

Features:

I Only uses the distance to input data

I Efficient numerical PDE algorithm

I Results smoother than any piecewise linear approx. (in 3D)

I Handles complicated topologies easily

I Scalable (resolution), and extendable to other methods
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Setting

Data set: S, includes points, curves and surface patches.

I Distance function:

d(~x) := dist(~x ,S)

I Surface energy functional:

E ( Γ ) =

[∫
Γ
dp(~x) ds

]1/p (
= ‖d |Γ‖Lp

)

I Γ is the smooth surface to be evolved
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Variation

Variation of the surface energy:

δE (Γ)

δΓ
=

1

p

[∫
Γ
dp(~x)ds

] 1
p−1 [

pdp−1∇d · ~n + dpκ
]

I Variation in potential

I Variation in surface area



Euler-Lagrange Equation

dp−1(~x)
[
∇d(~x) · ~n + 1

p d(~x)κ
]

= 0

I Potential force
I Minimizes potential energy.
I Brings surface closer to S .

I Surface tension
I Minimizes surface area.
I d(~x) term makes the surface stiff when far from S , and more

flexible closer to S .

Consequences:

I Need more data points to resolve a fine feature. (sampling
density)

I p affects the flexibility of the membrane.
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Goal

Look for a local minimum.

Avoid global minimum: Γ = ∅
I by finding an initial surface

I not to far from S

I according to sampling density.

Note: Another global minimum Γ = S can occur if S is a smooth
surface, but in practice it never is. Why?
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Curve evolution

Set initial Γ enclosing1 S, and
Use gradient descent approach with flow:

dΓ

dt
= −

[∫
Γ
dp(~x)ds

] 1
p−1

dp−1(~x)
[
∇d(~x) · ~n + 1

pd(~x)κ
]
~n

Notes:

I If p � 1, then only the most remote points move in at each
iteration.

I Want the whole surface to move in.

I In practice, p = 2 is best.

1otherwise Γ might shrink to a global minimum
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Issues

1. Will we get stuck at an “undesirable” local minimum?

I If initial Γ is too far, then most likely.
I If initial Γ is “close enough” to S, then unlikely.

2. Will we collapse through S?

I Depends on grid resolution and Sampling density:
Note that the maximum of d(~x) on final Γ is inversely
proportional to the sampling density.

I Heuristic: make grid resolution ∼ sampling density
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Numerical Examples: Cones

Computations were done on Pentium III, 600Mhz CPU, 1GB RAM.



Numerical Examples: Tori



Numerical Examples: Tori 2



Numerical Examples: Initial Data for 3 More Examples



Numerical Examples: Knot

Reconstruction of a knot on a 80× 80× 80 grid.



Numerical Examples: Mechanical Part

Reconstruction of a mechanical part on a 33× 33× 80 grid.



Numerical Examples: Utah Tea Pot

Reconstruction of a mechanical part on a 79× 54× 45 grid.



Numerical Examples: MRI scan

Reconstruction of a rat brain on a 63× 62× 63 grid.



The End

Thank You!



The End

Questions?
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Initial Surface

Good initial surface:

I Avoids spurious local minima

I Improves speed of convergence

Let A := {~x : d(~x) < ε}, then use the “exterior” portion of ∂A, as
the initial surface Γ0:

See [1, 5.2] for implementation details.
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Initial Surface

Assuming uniform sampling density, choose ε such that

1

α
> ε >

r

2

where:

I r = max{dist(~x , ~y) : ~x , ~y ∈ S and connected}, and

I α is the maximum local sampling density
(1/α is the minimum local feature size).

Works well in practice.
It takes O(N + |S|) operations to compute Γ0

Note: if sampling density is non-uniform, let ε(~x) be proportional
to local feature size and/or inversely proportional to sampling
density.
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Possible optimizations

I A coarser grid resolution may be used to construct Γ0

I Multiresolution adaptive method may be used in curve
evolution

I Various general level set method optimizations.



Computing the Distance Function, d

In general, given a domain Ω, with S ⊂ Ω, solve the PDE:{
‖∇d(x)‖ = 1 for x ∈ Ω \ S
d(x) = 0 for x ∈ S

using your favourite numerical PDE method. Can view d as a
“signed” distance function from S.

Author’s solution for 2D: To compute uij = d(xi , yj) on a grid with
N grid points, solve

max(0, uij − xmin)2 + max(0, uij − ymin)2 = h2

where h is the grid size, and

xmin = min(ui−1,j , ui+1,j), ymin = min(ui ,j−1, ui ,j+1)

using a nonlinear variation of Gauss-Seidel iteration.
Uses O(N) = O(N + |S|) operations.



Computing the Distance Function, d

In general, given a domain Ω, with S ⊂ Ω, solve the PDE:{
‖∇d(x)‖ = 1 for x ∈ Ω \ S
d(x) = 0 for x ∈ S

using your favourite numerical PDE method. Can view d as a
“signed” distance function from S.
Author’s solution for 2D: To compute uij = d(xi , yj) on a grid with
N grid points, solve

max(0, uij − xmin)2 + max(0, uij − ymin)2 = h2

where h is the grid size, and

xmin = min(ui−1,j , ui+1,j), ymin = min(ui ,j−1, ui ,j+1)

using a nonlinear variation of Gauss-Seidel iteration.
Uses O(N) = O(N + |S|) operations.



2D vs. 3D

I In 2D, this method yields a piecewise linear shape
I Not unlike other parametric methods

I In 3D, this method avoids sharp edges
I Result smoother than polyhedral approximations
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Delaunay shape reconstruction [3]

Recall: We may reconstruct the surface using a triangulation of
data points. For example, Delaunay triangulation:



Delaunay shape reconstruction [3]

Could construct directly or convert from a Voronoi Diagram:

Note: Delaunay triangulation = Dual of a Voronoi diagram



Delaunay shape reconstruction [3]

Construct a cover of the triangles: A :=
⋃
x∈S
Br (x). If a given

simplex T 6∈ A, then exclude it from the triangulation:



Delaunay shape reconstruction [3]

Finally output the exterior faces.
A more interesting example:
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