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Summary

> Take a set of points &
» Wrap § with some smooth surface I', not too far away

> Evolve the surface minimizing its surface area (SA) and its
distance from the data (dist.).
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Need to reconstruct poorly formed shapes for:
» Medical imaging (e.g. get 3D organ model from 2D scans),
» Data visualization (e.g. interpolate data with a surface),
» Computer vision (e.g. approx. surface given data points),

Physical modelling (e.g. need perfectly closed surfaces),

v

v

3D scanning (e.g. repair poorly scanned 3D images)
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Introduction

Problems encountered:
1. Data point connections unknown,

2. Shape topology unknown.

Two approaches:
» Parametric
» e.g. Delaunay triangulations or Voronoi diagrams
» e.g. PDE based methods exist
> in either case, difficult to handle the two problems above
» Non-parametric (implicit surfaces)
» Level Set Method [2]
» get shape topology for free
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Introduction

Authors’ approach:
Minimize an energy functional that balances:

» Surface area (elastic energy)

» Distance to data (potential energy)

Features:
» Only uses the distance to input data
» Efficient numerical PDE algorithm
» Results smoother than any piecewise linear approx. (in 3D)
» Handles complicated topologies easily

» Scalable (resolution), and extendable to other methods
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Setting

Data set: &, includes points, curves and surface patches.

» Distance function:

d(%) = dist(%, S)

» Surface energy functional:

E(r) = | [ o) o] = el )

P

» [ is the smooth surface to be evolved



Variation

Variation of the surface energy:

1

41

OE(MD) _ 1 /dp()?)ds [ pdPVd -7 + dPr ]
or pLr

» Variation in potential ——J

» Variation in surface area
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Euler-Lagrange Equation

dP~1(%) [ Vd(R)- 7 +

» Potential force —/A

» Minimizes potential energy.
» Brings surface closer to S.

» Surface tension

» Minimizes surface area.
» d(X) term makes the surface stiff when far from S, and more
flexible closer to S.

Consequences:

» Need more data points to resolve a fine feature. (sampling
density)

» p affects the flexibility of the membrane.
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Goal

Look for a local minimum.

Avoid global minimum: ' =0

» by finding an initial surface
» not to far from S

» according to sampling density.

Note: Another global minimum I' = & can occur if S is a smooth
surface, but in practice it never is. Why?



Curve evolution

Set initial I enclosing! S, and
Use gradient descent approach with flow:
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Curve evolution

Set initial I enclosing! S, and
Use gradient descent approach with flow:

1

=1
a_ [ / dp()?)ds]p dP1(z) [Vd(%) 7+ 1d(R)s] A
dt r P
Notes:

> If p > 1, then only the most remote points move in at each
iteration.

» Want the whole surface to move in.

» In practice, p = 2 is best.

otherwise I' might shrink to a global minimum
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Issues

1. Will we get stuck at an “undesirable” local minimum?

» If initial T is too far, then most likely.
> If initial [ is “close enough” to &, then unlikely.

2. Will we collapse through S§7

—
| -1 [

» Depends on grid resolution and Sampling density:
Note that the maximum of d(X) on final I is inversely
proportional to the sampling density.

» Heuristic: make grid resolution ~ sampling density




Numerical Examples: Cones

Computations were done on Pentium IIl, 600Mhz CPU, 1GB RAM.

s

s 100 iterations S 300 iterations

s

initial guess 5 250 iterations

55 400 iterations




Numerical Examples: Tori

3200 data points Vis50

200 iterations

VisS0!

1000 iterations

Vi=50

initial shape

VisS0!

600 iterations

VisS0

1200 iterations

VisS0)

N



Numerical Examples: Tori 2

00:00:00
01365
1of 1

Monday

00:00:00
01365

Monday

Visb0
reconstruction on a 39x31x31 grid

reconstruction on a 80x60x60 grid

Vis50




VisS0

Numerical Examples: Initial Data

for 3 More Examples

Vis50

VisSO

10000 data points for a knot

4102 data points for a mechanical part

26103 data points for a tea pot



Numerical Examples: Knot

Reconstruction of a knot on a 80 x 80 x 80 grid.

| 00:00:00
03269
10f 1

Vis50 Vis5D
initial shape using outer distance contour reconstructed shape




Numerical Examples: Mechanical Part

Reconstruction of a mechanical part on a 33 x 33 x 80 grid.

00:00:00
01365
1of 1

Honday

()

(/

Vis5D

00:00:00
01365
1of 1

Monday

Vis50

initial shape using an outer distance contour

reconstructed shape




Numerical Examples: Utah Tea Pot

Reconstruction of a mechanical part on a 79 x 54 x 45 grid.

00:00:00 00:00:00
01365 01365
1of 1 10f 1

Monday Monday

Vis50 Vis50

initial shape using an outer distance contour reconstructed shape



Numerical Examples: MRI scan

Reconstruction of a rat brain on a 63 x 62 x 63 grid.

| 00:00:00

Vis50

00:00:00

Vis5D

MRI slices of a rat brain with 1500 points

reconstructed shape




The End

Thank Youl



The End

Questions?
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Initial Surface
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» Improves speed of convergence
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See [1, 5.2] for implementation details.
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Initial Surface

Good initial surface:
» Avoids spurious local minima
» Improves speed of convergence

Let A:={X:d(X) < e}, then use the “exterior’ portion of J.A, as
the initial surface Iy:

. ® 9.A r;

See [1, 5.2] for implementation details.



Initial Surface

Assuming uniform sampling density, choose ¢ such that
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where:
» r = max{dist(X,y) : X,y € S and connected}, and

> « is the maximum local sampling density
(1/cv is the minimum local feature size).

Works well in practice.
It takes O(N + |S|) operations to compute [g



Initial Surface

Assuming uniform sampling density, choose ¢ such that

1 >e> 5
Q 2
where:
» r = max{dist(X,y) : X,y € S and connected}, and
> « is the maximum local sampling density
(1/cv is the minimum local feature size).

Works well in practice.
It takes O(N + |S|) operations to compute [g

Note: if sampling density is non-uniform, let £(X) be proportional
to local feature size and/or inversely proportional to sampling
density.



Possible optimizations

> A coarser grid resolution may be used to construct g

» Multiresolution adaptive method may be used in curve
evolution

» Various general level set method optimizations.



Computing the Distance Function, d

In general, given a domain Q, with S C €, solve the PDE:

[Vd(x)]| =1 forxeQ\S
d(x)=0 forxe S

using your favourite numerical PDE method. Can view d as a
“signed” distance function from S.



Computing the Distance Function, d

In general, given a domain Q, with S C €, solve the PDE:

[Vd(x)]| =1 forxeQ\S
d(x)=0 forxe S

using your favourite numerical PDE method. Can view d as a
“signed” distance function from S.

Author’s solution for 2D: To compute ujj = d(x;,y;) on a grid with
N grid points, solve

max(O, uj — Xmin)2 + max(O, uij — ymin)2 = h2
where h is the grid size, and

Xmin = min(ui—1j, Ui+1;), Ymin = min(u; j_1, Uj j4+1)

using a nonlinear variation of Gauss-Seidel iteration.
Uses O(N) = O(N + |S|) operations.



2D vs. 3D
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2D vs. 3D

> In 2D, this method yields a piecewise linear shape
» Not unlike other parametric methods

in 2D
Nothin
Ne w a

> In 3D, this method avoids sharp edges
» Result smoother than polyhedral approximations



Delaunay shape reconstruction [3]

Recall: We may reconstruct the surface using a triangulation of
data points. For example, Delaunay triangulation:
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Delaunay shape reconstruction [3]

Could construct directly or convert from a Voronoi Diagram:

Note: Delaunay triangulation = Dual of a Voronoi diagram



Delaunay shape reconstruction [3]

Construct a cover of the triangles: A := U B,(x). If a given

xES
simplex T & A, then exclude it from the triangulation:

4
Aﬂﬁ'»’\ﬂ

N VAT A7,




Delaunay shape reconstruction [3]

Finally output the exterior faces.
A more interesting example:
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