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Introduction

Applications:
I Computer vision

I Surveillance (e.g. security, traffic monitoring, people counting)
I Human computer interaction (e.g. Kinect)
I Face detection (e.g. in digital cameras)
I Automatic guidance (e.g. digital image stabilization)
I Medical imaging (e.g. surgery assistance)
I Animation (e.g. convert video to animation)
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Introduction

First approach:

I Take the difference (in intensity) of consecutive frames

I Moving objects appear where the difference is large

Example: (frame 23− 22)

Problems:

I Can’t see the outline of the object

I Can’t see temporarily stationary objects

I In general: detect too much or too little (threshold)
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Background Subtraction approach:

I Take the difference between background and each frame

I Can now see temporarily stationary objects

I However now we need a background image

|I−0.5|>0.15−−−−−−−−→



Introduction

Background Subtraction approach:

I Take the difference between background and each frame

I Can now see temporarily stationary objects

I However now we need a background image

|I−0.5|>0.15−−−−−−−−→



Introduction

Background Subtraction approach:

I Take the difference between background and each frame

I Can now see temporarily stationary objects

I However now we need a background image

|I−0.5|>0.15−−−−−−−−→



Introduction

Other Background Subtraction approaches:

I Adaptive Median Filtering (AMF) (1995) [2]

I Running Gaussian Average (1996) [3]

I Mixture of Gaussians (MoG) (2000) [4]

I Zivkovic AGMM (adaptive Gaussian mixtures) (2004) [5]

I Eigenbackgrounds (2000) [6]

I Prati Mediod (mediod filtering) (2003) [7]

Most methods here are statistical in nature.
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Motion detection:

Look at difference between consecutive frames:

Build an image with large gradient at boundary:

Segmentation using Level Set:



Author’s Approach

Start with two initial frames:

Motion detection:

Look at difference between consecutive frames:

Build an image with large gradient at boundary:

Segmentation using Level Set:



Author’s Approach

Start with two initial frames:

Motion detection:

Look at difference between consecutive frames:

Build an image with large gradient at boundary:

Segmentation using Level Set:



Author’s Approach

Start with two initial frames:

Motion detection:

Look at difference between consecutive frames:

Build an image with large gradient at boundary:

Segmentation using Level Set:



Author’s Approach

Start with two initial frames:

Motion detection:

Look at difference between consecutive frames:

Build an image with large gradient at boundary:

Segmentation using Level Set:



Author’s Approach

Tracking:

I Use curve from before, continue segmentation on one of the
original frames:

Note: in fact we evolve the curve to fit the original frame and the
difference image simultaneously. Otherwise this method is same as
Caselles and Coll [8]
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Author’s Approach

Main idea: do motion detection and tracking simultaneously.

I Builds on Caselles and Coll [8] for geodesic active contours
I Builds on

I Narrow Band [9] and
I Fast Marching [10]

front propagation methods
I Combines the two into a new front propagation method:

I Hermes Algorithm

(We will focus on building the Level Set PDE (first bullet))
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The Model

Recall Geodesic Active Contours formulation:

Image: I(x , y) : [0, a]× [0, b]→ R+

Curve: C(p) : [0, 1]→ R2

Normal to the curve: ~N (C(p)) : C([0, 1])→ R2

Implicit function: u(x , y) : [0, a]× [0, b]→ R such that

C([0, 1]) = {(x , y) : u(x , y) = 0} and ‖∇u‖ = ~N

Curvature: κ = ∇ ·
(
∇u
‖∇u‖

)
Goal: find C that minimizes

E (C) = (1− λ)

∫ 1

0
|C′(p)|2dp︸ ︷︷ ︸
internal

+ λ

∫ 1

0
g2(|∇I(C(p))|)dp︸ ︷︷ ︸

external

given some λ ∈ [0, 1], and g : R+ → [0, 1] s.t. g(r)
r→∞−−−→ 0, and g(0) = 1.
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I the edges of the object (Tracking)

Idea: modify the image to have large gradient where the motion
occurs!
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Preparation

Define the inter-frame grey level difference image:

d(x , y) = I(x , y ; t + 1)− I(x , y ; t)

Let D be a r.v. with values from

{d(x , y) : (x , y) ∈ [0, a]× [0, b]}.

Let L be a binary r.v. that can take values form {static , mobile}:
I L = static (pixel is a background pixel)

I L = mobile (pixel is on the moving object)
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Probabilites

We define the probability density functions (pdf’s):

I pD|L(d |static) → pdf of observed d given a static pixel

I pD|L(d |mobile) → pdf of observed d given a mobile pixel

A priori probabilities:

I pL(static) → probability that a pixel is static

I pL(mobile) → probability that a pixel is mobile

Now take a pixel (x , y) from some observed D.
Then the probability this pixel has intensity d is given by:

pD(d) = pL(static)pD|static(d |static)+pL(mobile)pD|static(d |mobile)

Follows from Bayes rule. Sometimes called marginalization.
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Mixture of Distributions

I pD is a mixture of Laplacian distributions, so:

pD|L(d |`) =
λ`
2

e−λ`|d |

I We have pD , since we can observe it.

I Need to find pL(`) and λ`.

I Use a Maximum Likelihood Estimation method [11].

I Note: could use Gaussian distributions instead.
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More probabilities!
Define two more probabilities (call them energies):

Etrans((x , y), (v ,w)) = p(d(x , y)|static) · p(d(v ,w)|mobile)

+ p(d(x , y)|mobile) · p(d(v ,w)|static)

Esmooth((x , y), (v ,w)) = p(d(x , y)|static) · p(d(v ,w)|static)

+ p(d(x , y)|mobile) · p(d(v ,w)|mobile)

Interpret as probabilities for pixels (x , y) and (v ,w) to:

Etrans((x , y), (v ,w)) Esmooth((x , y), (v ,w))

mark the boundary be on the same side
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Detection
Finally define the new image:

Idetect(x , y) = max
(v ,w)∈n(x ,y)

{
Etrans((x , y), (v ,w))

Esmooth((x , y), (v ,w))

}

where n(x , y) is the neighbourhood of the pixel (x , y):

I Gives high gradient at the boundary of moving object

I May apply smoothing, to reduce noise
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Now modify the energy functional:

E (C) = (1− λ)
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An example of motion detection only:



Detection
Now modify the energy functional:

E (C) = (1− λ)

∫ 1

0
|C′(p)|2dp + λ

∫ 1

0
g2(|∇Idetect(C(p))|)dp

An example of motion detection only:



Tracking

Finally need to insure curve segments the object in each frame.
Modify the external part of the energy functional to be:∫ 1

0

(
γ g(|∇Idetect(C(p))|)︸ ︷︷ ︸

detection

+(1− γ) g(|∇It(C(p))|)︸ ︷︷ ︸
tracking

)2
dp

where γ ∈ [0, 1] is some parameter that balances detection and
tracking:

I γ = 0 =⇒ usual geodesic active contour model

I γ = 1 =⇒ only motion detection



Tracking

Finally need to insure curve segments the object in each frame.
Modify the external part of the energy functional to be:∫ 1

0

(
γ g(|∇Idetect(C(p))|)︸ ︷︷ ︸

detection

+(1− γ) g(|∇It(C(p))|)︸ ︷︷ ︸
tracking

)2
dp

where γ ∈ [0, 1] is some parameter that balances detection and
tracking:

I γ = 0 =⇒ usual geodesic active contour model

I γ = 1 =⇒ only motion detection



Tracking

Solve as a geodesic active contour problem, to get

du

dt
=

[
γ

(
g(|∇Idetect(C (p, t))|) · κ(p, t)

+∇g(|∇Idetect(C (p, t))|) · ∇u

|∇u|

)
+(1− γ)

(
g(|∇It(C (p, t))|) · κ(p, t)

+∇g(|∇It(C (p, t))|) · ∇u

|∇u|

)]
|∇u|,

the speed function of the contour.



Numerical Examples: Football (Detection only)

Football sequence. Two initial frames:



Numerical Examples: Football (Detection only)



Numerical Examples: Football (Detection only)



Numerical Examples: Various (Detection only)



Numerical Examples: Highway (Detection only)



Numerical Examples: Highway (Detection and Tracking)



Numerical Examples: Football (Detection and Tracking)

Thank You!



The End
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