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Fig. 1. A rigid whiskey glass is pinched between the index finger and thumb of an animated hand model and lifted up. The first frame shows the internal

geometry of the distal phalanges whose vertices drive the finger tips of the tetrahedral simulation mesh of the hand. The remaining hand bones and tendons

(not shown) are used to determine other interior animated vertices. The following frames show a selection of frames from the resulting simulation showing the

grasp, lift and hold of the glass. The last image shows a photo of a similar scenario for reference. The collision surface of the hand is represented by an implicit

function approximating a smoothed distance potential, while the glass surface is sampled using discrete points. Our method produces realistic deformation at

the point of contact between the fingers and the rigid object.

Frictional contact between deformable elastic objects remains a difficult

simulation problem in computer graphics. Traditionally, contact has been

resolved using sophisticated collision detection schemes and methods that

build on the assumption that contact happens between polygons. While

polygonal surfaces are an efficient representation for solids, they lack some

intrinsic properties that are important for contact resolution. Generally,

polygonal surfaces are not equipped with an intrinsic inside and outside

partitioning or a smooth distance field close to the surface.

Here we propose a new method for resolving frictional contacts against

deforming implicit surface representations that addresses these problems.

We augment a moving least squares (MLS) implicit surface formulation with

a local kernel for resolving contacts, and develop a simple parallel transport

approximation to enable transfer of frictional impulses. Our variational

formulation of dynamics and elasticity enables us to naturally include contact

constraints, which are resolved as one Newton-Raphson solve with linear

inequality constraints. We extend this formulation by forwarding friction

impulses from one time step to the next, used as external forces in the

elasticity solve. This maintains the decoupling of friction from elasticity

thus allowing for different solvers to be used in each step. In addition, we

develop a variation of staggered projections, that relies solely on a non-linear

optimization without constraints and does not require a discretization of the

friction cone. Our results compare favorably to a popular industrial elasticity

solver (used for visual effects), as well as recent academic work in frictional

contact, both of which rely on polygons for contact resolution. We present

examples of coupling between rigid bodies, cloth and elastic solids.
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1 INTRODUCTION

Frictional contact between elastic solids is an integral part of any
simulation pipeline. It is essential for many real behaviors including
grasping, walking, hitting a ball with racket and holding yarns
of fabric together. However, simulating frictional contact remains
challenging despite more than 30 years of research in computer
graphics (see Section 2), and more than 300 years of research in
physics and engineering.

A key reason for the difficulty is that the standard laws governing
frictional contact behavior are non-smooth. They require integrating
smooth differential equations with inequality constraints due to con-
tact and friction, leading to non-smooth jumps in forces and veloci-
ties. This has been the major focus of previous research. There has
been significant progress in understanding this aspect of frictional
contact, especially following the seminal work of Moreau [1973]. It
is now understood that introducing non-smoothness is essential to
model friction’s ability to make things stick, and to stop motion in
finite time.
However, this makes frictional forces extraordinarily sensitive

to non-smoothness in representing geometry, especially deform-
ing geometry. Widely used polygonal surface representations, if
directly used for simulating frictional contact, can result in simula-
tions whose behavior depends sensitively on mesh resolution (see
Figure 6 for a preview). A high resolution simulation may behave in
a completely different way from a low resolution pre-visualization.
Non-smoothness in polyhedral representations of the friction cone
can also result in resolution-dependent artifacts. Thus, while non-
smoothness in frictional forces is essential, artificially introduced
non-smoothness in previous work can produce incorrect behavior.
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Here we show how these problems can be effectively solved.
We represent surfaces as smooth implicit surfaces computed from
standard polygonal mesh representations. In contrast to parame-
teric representations of smooth surfaces (e.g., subdivision surfaces,
NURBS), implicit surfaces provide a natural way to define the con-
tact problem as an optimization with inequality constraints defined
using a smooth potential function.
Many efficient solutions for frictional contact problems involve

the linearization of the friction cone, producing a polyhedral approxi-
mation. Unfortunately this causes the artificial anisotropy of friction
responses. Recent work in graphics present reformulations of the
friction problem in various ways, which sidestep this issue. How-
ever, all of these methods require specialized optimization solvers.
To maintain the flexibility of the method, we chose to improve on
the simpler formulation of Kaufman et al. [2008] by reparametrizing
the cone into polar coordinates, which removes the aforementioned
artifacts.
We focus on methods that integrate frictional contact forces im-

plicitly. This ensures that Coulomb’s law is satisfied at the end of
the time step exactly, and our sliding solid will eventually come to
a complete stop. The need for fully implicit integration of frictional
contact is further motivated by the observation that contact and
friction impulses are generally not orthogonal (especially for stiff
solids) [Erdmann 1994], and in fact may reinforce one another.
Modern solutions for implicit time integration of frictional con-

tact typically involve explicit mesh representations [Daviet et al.
2011; Erleben 2017; Kaufman et al. 2008; Li et al. 2018]. To the best of
our knowledge, fully implicit time integration of frictional contact
has not yet been applied to solids represented by implicit surfaces.
Some preliminary work has addressed contact [Desbrun and Cani
1994; Gascuel 1993] as well as explicit friction [Salisbury and Tarr
1997] on implicit surfaces, however these works target interactive
applications and suffer from the aforementioned drawbacks of ex-
plicit integration of friction forces.

Here we propose a new method for modelling implicit frictional
contact with smooth non-linear elastic solids. Our main contribu-
tions are:

• An implicit surface representation for modelling deformable
solids. This approach admits a simple formulation for re-
solving non-linear contact using non-penetration constraints
without the need for additional collision detection schemes.
• An algorithm for resolving non-linear frictional contact on
implicit surfaces.Without having to linearize the friction cone
at each point of contact, we are able to produce high fidelity
frictional contact responses that are suitable for modelling
real world contact problems.
• An enhanced time-splitting mechanism that propagates fric-
tion impulses into the constrained elasticity solve, while re-
solving contacts exactly. This permits using larger time steps
in simulation with fine grained meshes.

In the following section we give a more comprehensive review
of related works. Section 3 establishes the context for dynamic
simulation, followed by a description of our implicit surface model
in Section 4. We describe the details of our friction formulation in
Section 5 and provide results for various simulation scenarios in

Section 6. Finally, Section 7 explains the limitations of our method,
and Section 8 suggests topics for future work and concludes with a
summary of our contributions.

2 RELATED WORK

Simulation of realistic elastic objects and contact between them
received much attention from the computer graphics community
over decades. A number of approaches have been explored for mod-
elling, animating and simulating the physics of rigid and elastic
solids as well as flexible shells like cloth. Some methods employ
particles to represent the deformable media, from smoothed particle
hydrodynamics (SPH) [Becker et al. 2009] to material point method
(MPM) [Guo et al. 2018; Han et al. 2019] with full frictional con-
tact formulations as well as position based dynamics (PBD) [Müller
et al. 2007] and derivatives, for real-time applications. The most
popular method for simulating elastic bodies Ð perhaps due to the
sheer volume of available literature Ð remains the finite element
method (FEM). Some methods employ discontinuous discretizations
[English and Bridson 2008; Kaufmann et al. 2008] while others rely
on continuously linked meshes [Sifakis and Barbic 2012] to repre-
sent deformable media. The latter, being the most popular is the
discretization we choose, although our contact formulation does
not limit us to a particular style of discretization since we require
only a sampling of points and normals to produce a contact surface.
Smooth contact has previously been explored in the context of

rigid-bodies [Baraff 1990; Kry and Pai 2003] using parametric sur-
faces. Smoothness becomes even more critical when the contacting
bodies are allowed to deform and slide against each other. We chose
to represent the contacting surface using an implicit surface formu-
lation to leverage the intrinsic potential surrounding such a surface
for anticipating potential contacts.

Implicit surfaces. Implicit surfaces have been widely used to rep-
resent 3D geometry in literature. From modelling and animation
[Turk and O’Brien 2002; Vaillant et al. 2014] to simulating contact
between deformable solids [Cani 1993; McAdams et al. 2011]. A
popular Eulerian method for using implicit surfaces for developable
media was introduced by Oscher et al. [2004], although Lagrangian
variations exist [Hieber and Koumoutsakos 2005]. In contrast, we
rely on FEM to compute elasticity and dynamics equations, while
using the implicit surface solely for contact resolution and friction.
McAdams et al. [2011] relied on a signed distance function rep-
resentation of the geometry for collision detection. Vaillant et al.
[2013; 2014] used Hermite radial basis functions (HRBF) to improve
skinning. HRBFs employ a collection of points with normals to re-
construct the sampled surface, however it relies on a global solve
including all involved sample points. Shen et al. [2004] used a mov-

ing least squares (MLS) implicit surface to approximate geometry,
similarly involving all points per query, however no linear solve
is required. We use the same MLS approach but with a compactly
supported kernel [Morse et al. 2005; Ohtake et al. 2003; Öztireli et al.
2009].

Frictional contact. We review frictional contact models in the
general case of rigid or deformable solids. We are particularly inter-
ested in the trade-offs between accuracy, simplicity and scalability
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for these models. At a high level, frictional contact models can be
grouped into penalty-based methods, and constraint-based methods.

The idea behind penalty-based contact handling is that of apply-
ing a restorative force between colliding objects in the direction
that resolves the collision. Typically objects are allowed to intersect
during simulation at which point the restorative penalty force is
applied as a function of the amount of interpenetration [Kikuchi and
Oden 1988; Moore and Wilhelms 1988] to emulate elasticity. This
method is particularly efficient and hence popular in real-time com-
puter graphics, however it suffers from stiffness and stability issues.
Similarly, friction can be modelled by a viscous force proportional
to tangential velocity between touching surfaces. This approach
is especially useful for resolving friction within deformable solids
[Baraff and Witkin 1998]. Unfortunately, viscosity based friction
lacks the ability to model the biphasic nature of dry friction.
Constraint-based methods take a fundamentally different ap-

proach to frictional contact. Instead of guessing what penalty forces
would lead to a collision free state (and with the correct friction
behavior), we may chose the desired configuration directly [Baraff
andWitkin 1998; Müller et al. 2007] or pick the exact forces that pro-
duce the target positions and/or velocities [Spillmann and Teschner
2008]. This corresponds to imposing explicit constraints on the
configuration space. Although this approach is very efficient, it
poses problems in the context of complex simultaneous collisions
where no clear change in velocity produces a collision free state. Fur-
thermore this technique is ill suited to more sophisticated domain
discretizations like reduced coordinates or implicit surfaces.
Lastly, to circumvent the issues mentioned above, we may con-

sider velocity as unknown and solve for frictional contact simul-
taneously with dynamics. This is the only way of enforcing the
desired conditions at the end of each time step. Solving for con-
tact and Coulomb friction simultaneously remains a challenging
problem because it poses non-linear and non-smooth constraints
on the overall problem. As a result, most methods in computer
graphics tend to approximate Coulomb friction rather than solving
for it exactly. For instance, Tresca-like methods model the sliding
threshold as independent of the normal force [Lötstedt 1982]. An ar-
tifact of this approximation is that two solids with different weights
will start sliding at different times on a gradually increasing slope.
Kaufman et al. [2005] proposed to use the normal component of
the reaction force without friction to determine tangential friction
force. This violates the coupling between the frictional forces and
normal forces as highlighted by the Painlevé paradox [Painlevé
1895]. Kaufman et al. [2008] then improved the technique by solv-
ing for tangential and normal components of the frictional contact
using staggered projections. This approach lacks fidelity and repro-
ducibility of certain behaviors since it requires a discretization of
the friction cone that imposes a discretization dependent anisotropy
on the sliding direction as noted by Acary and Brogliato [2008].
Later, Bertails-Descoubes et al. [2011] used the formulation by Alart
and Curnier [1991] for frictional contact to produce a non-smooth
Newton-Raphson root finding technique for hair friction. This was
then extended by Daviet et al. [2011] to improve scalability us-
ing a Gauss-Seidel approach in conjunction with an alternative,
Fischer-Burmeister formulation of frictional contact. The work by
Daviet et al. was subsequently used to further improve efficiency

using adaptive non-linearity [Kaufman et al. 2014]. Erleben [2017]
abstracted the Alart-Curnier approach into a general proximal al-
gorithm allowing for other iterative methods and friction models
such as Coulomb-Contensou. Li et al. [2018] extended these ideas
to adaptive cloth simulation based on nodal constraints. Macklin et
al. [2019] produce an efficient solver for resolving frictional contact
between rigid and deformable in interactive simulations. Finally
Verschoor et al. [2019] extend the conjugate residual method to
resolve frictional contact simultaneously with elasticity. In contrast
to previous work, we maintain separate elasticity and frictional
contact steps, allowing our method to fit into existing simulation
pipelines more easily. Our work mainly focuses on contact fidelity
and method extensibility.

3 BACKGROUND

In this section we will establish the context for handling frictional
contact. Namely we will develop the dynamics partial differential
equation for hyperelastic materials subject to traction on the surface.
Then we describe how frictional contact can be resolved using this
formulation in the sections to follow.

3.1 Generalized Coordinates

Consider a system of solids represented with𝑚 generalized coor-
dinates q(t) ∈ R𝑚 with generalized velocities ¤q(t) ∈ R𝑚 at some
time t. The generalized mass, denoted by M, is an 𝑚 ×𝑚 square
matrix. Generalized coordinates serve as an abstraction for a dis-
crete space of coordinates that uniquely identify the configuration
of a system of solid bodies. The position of a point 𝑖 on the solid in
physical space is given by 𝒙𝑖 (q) ∈ R

3. That is, 𝒙𝑖 is parameterized
by generalized coordinates q. The velocity of this point is similarly
represented by 𝒗𝑖 ( ¤q) ∈ R

3. In general, we will use the italics to
mark quantities in physical space and roman font face for quantities
in configuration space.

3.2 Equations of Motion

The equations of motion can be written in configuration space as

M
𝑑 ¤q

𝑑t
= b(t, q, ¤q), (1)

where b is the total generalized force. Forces generated by colli-
sions can be very large and can happen on a very small time scale,
especially between stiff solids. This can be quite problematic for
numerical simulation. To mitigate this shortcoming we chose to
work with force impulses rather than forces directly [Mirtich and
Canny 1994; Moreau 1973]. Using backward Euler time integration,
we integrate the equations of motion over an arbitrary time step
Δt. To simplify notation, we use superscripts to denote the time
variable:

MΔ ¤q = f t+Δt, (2)

where Δ ¤q = ¤qt+Δt−¤qt and f t+Δt is the total generalized force impulse
at the next time step:

f t+Δt =

∫ t+Δt

t
b(s, ·, ·) 𝑑s.
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The total impulse f is composed of two parts:

f = f𝑒 + r

where f𝑒 is the elastic impulse and r is the generalized frictional
contact impulse. By rearranging (2), we can form an implicit system
for ¤qt+Δt as follows

¤qt+Δt = ¤qt +M−1 (f t+Δt𝑒 + rt+Δt). (3)

To complete the simulation loop, we apply backward Euler time
integration on the configuration variable to get

qt+Δt := qt + Δt¤qt+Δt . (4)

3.3 Contact Mechanics

In order to accurately represent frictional contacts, it is essential to
establish a mapping from a generalized configuration space to the
physical space where contacts occur. We define the Jacobian for a
point 𝑖 on a solid as

𝑱 𝑖 :=
𝜕𝒙𝑖

𝜕q
, (5)

which maps configuration vectors to vectors in physical space:

¤𝒙𝑖 := 𝒗𝑖 = 𝑱 𝑖 ¤q. (6)

Similarly, impulses in physical space can be mapped into the gen-
eralized configuration space. Suppose 𝒇 𝑖 is a force impulse at the
point 𝑖 on a solid in physical space, then from the principle of virtual
work, 𝑱⊤𝑖 𝒇 𝑖 corresponds to the same impulse in configuration space.

This is sufficient tomodel contacts with objects outside the system
governed by q; however for internal contacts extra care is required.
Suppose a contact occurs between points 𝑖 and 𝑗 on two solids
(possibly the same). Then the relative velocity between the two
points is given by

𝒗𝑖 − 𝒗 𝑗 = (𝑱 𝑖 − 𝑱 𝑗 ) ¤q.

In this scenario, by Newton’s third law, the force impulse on point
𝑖 is equal in magnitude and opposite in direction to the force impulse
on point 𝑗 :

𝒇 𝑗 = −𝒇 𝑖 .

Then the generalized force impulse on the whole system can be
written as

f = 𝑱⊤𝑖 𝒇 𝑖 + 𝑱
⊤
𝑗 𝒇 𝑗 = (𝑱 𝑖 − 𝑱 𝑗 )

⊤𝒇 𝑖 .

This produces a global contact Jacobian matrix 𝑱 consisting of
triplets of rows for each contact between points 𝑖 and 𝑗 defined by
𝑱 𝑖 − 𝑱 𝑗 . For contacts against external objects (not governed by q),
𝑱 𝑗 is taken to be zero. Thus 𝑱 is a 3𝑛 ×𝑚 matrix where 𝑛 is the total
number of contacts.

Finally we can rewrite (3) in terms of the stacked frictional contact
impules 𝒓 ∈ R3𝑛 as follows:

¤qt+Δt = ¤qt +M−1 (f t+Δt𝑒 + 𝑱⊤𝒓 t+Δt). (7)

To disambiguate solving for 𝒇 𝑖 or 𝒇 𝑗 (and choosing the relative

velocity direction) on internal contacts, we rely on an intrinsic
property of our contact handling mechanism Ð we use a vertex
based mesh to represent solid deformation and a smooth implicit
surface to model its collision boundary. Collisions between two
objects are only allowed between vertices on one object and an

implicit surface representation of the other. Thus for each collision
between two objects, the point 𝑖 is always taken to be the point
on the implicit surface, while 𝑗 is a point corresponding to a mesh
vertex.

Let us assume for the remainder of this section that the frictional
contact impulses 𝒓 t+Δt are known. Then equation (7) can be solved
from a variational principle:

¤qt+Δt = argmin
u

1

2





¤qt − u






2
M
+𝑊 (qt+Δt) − u⊤ 𝑱⊤𝒓 t+Δt,

where the mass induced norm is defined by ∥u∥2
M

:= u⊤Mu for all

u ∈ R𝑚 , and𝑊 (qt+Δt) is the total elastic strain energy at the end
of the time step. The negative derivative of strain energy −𝜕𝑊 /𝜕q
effectively produces the desired elastic forces. We use the standard
non-linear neo-Hookean strain energy [Sifakis and Barbic 2012] or
its variation called Stable neo-Hookean [Smith et al. 2018], although
other choices also work. Finally, with (4) we get the optimization
problem

¤qt+Δt = argmin
u

1

2





¤qt − u






2
M
+𝑊 (qt + Δt u) − u⊤ 𝑱⊤𝒓 t+Δt . (8)

The goal of this paper is to build a method for solving Equa-
tion (8) for elastic solids with boundaries represented by implicit
surfaces where 𝒓 t+Δt is constrained to satisfy the Coulomb friction
conditions.
Note that the frictional contact impulse 𝒓 t+Δt is dissipative and

cannot be derived from a single energy potential. In Section 5 we
will build an algorithm for solving for 𝒓 t+Δt by iteratively solving a
slightly modified version of equation (8).

4 IMPLICIT SURFACES

Handling contact on smooth solids can be problematic when they
are represented by polygons. For instance, artifacts can arise when
two smooth objects are sliding if contact is resolved on a per poly-
gon basis, especially with coarse resolutions as shown in Figure 2.
Furthermore non-smooth discretizations limit the ways general pur-
pose optimization solvers can be applied for contact resolution. This
forces the development of complex iterative schemes for collision
handling and resolution [Bertails-Descoubes et al. 2011; Daviet et al.
2011; Li et al. 2018]. For these reasons we aim to design a surface rep-
resentation that is ideal for smooth frictional contact handling and
resolution. In particular we are looking for the following properties:

• The surface is smooth and supports a surrounding potential
field. This enables using general purpose smooth non-linear
optimizers that can handle inequality constraints for contact
resolution.
• This field must be differentiable with respect to deforma-
tion of the solid in order to produce smooth sliding during
deformation.
• To prevent dense derivatives, the potential must have a locally
compact area of influence: changes at some local patch of the
surface will not affect the potential in a far away region.
• The surface supports a differentiable interpolation between
the degrees of freedom (generalized coordinates) and individ-
ual contact points. This is required for computing the contact
Jacobian 𝑱 .
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Fig. 2. Smooth sliding on implicit surface. This is a cross section of the coarsest

sample simulation of Figure 6c listed in Section 6 after the cloth has slipped

off the cylinder. Here, Houdini’s cloth simulation is on the left, and ours

is on the right. A vertex (circled) on the cloth in both examples is selected

and traced from its original position as it slides along the surface. On the

left, the polygonal contact produces an irregular contact pattern that causes

unwanted vibrations in the cloth, while our method on the right produces a

more natural smooth trajectory for a sliding vertex.

Previous work has employed embedded signed distance fields
(SDFs) for collision handling [McAdams et al. 2011], however dis-
tance fields defined on polygonal surfaces are non-differentiable
and can pose serious convergence issues when used as constraints
in optimization solvers. Thus methods that use distance fields for
implicit contact handling require some form of mollification [Li et al.
2020]. This is further illustrated in Appendix A.

It is worth noting that the desired potential field need not corre-
spond to or approximate a signed distance to the polygonal surface.
It is sufficient for the potential to be signed and smooth at the sur-
face, whereas its scaling can be adjusted for optimal convergence.
Nevertheless, the implicit surface must closely approximate the ob-
ject being simulated. We measure the error of approximation using
a Hausdorff distance.
In the remainder of this section we propose a collision surface

representation that meets the above criteria.

4.1 Local Moving Least Squares Potential

Suppose we have a solid domain Ω(q) ⊂ R3 parametrized by q with
a smooth boundary 𝜕Ω. We omit the parameter q in this section for
brevity, but it will become significant in Section 5.

Note that 𝜕Ω has a smooth outward facing unit normal field. Let
S be a finite set of sample points on 𝜕Ω. Then each 𝒔 ∈ S is endowed
with a well defined outward facing unit normal 𝒏𝒔 .

We would like to compute a global potential Ψ : R3 → R whose
zero iso-surface approximates the surface 𝜕Ω. Ψ should have 𝐶1

continuity at the zero iso-surface such that it can be included as a
smooth inequality constraint in a dynamics simulation to resolve

contacts. We define the approximate solid domain implicitly using
Ψ:

Ω̃ := { 𝒙 ∈ R3 : Ψ(𝒙) ≤ 0 }.

As before, we require locality. To achieve this, neighboring local
potentials are blended using barycentric weights.
At each sample point 𝒔 ∈ S, we assign a local potential field

𝜓 ( · ; 𝒔) : R3 → R, which can be chosen arbitrarily but must be
vanishing at the sample point and have a gradient aligned with 𝒏𝒔 .
An example of such a field is

𝜓 (𝒙 ; 𝒔) = 𝒏⊤𝒔 (𝒙 − 𝒔).

Then for any 𝒙 ∈ R3 we identify a neighborhood of samples close
to 𝒙 and blend the corresponding local potential to form a 𝐶1 con-
tinuous global potential field Ψ. In particular, let N(𝒙) ⊂ S be a
neighborhood of samples near 𝒙 , then define

Ψ(𝒙) =
∑

𝒔∈N(𝒙)

𝑤 (𝒙 ; 𝒔)𝜓 (𝒙 ; 𝒔), where
∑

𝒔∈N(𝒙)

𝑤 (𝒙 ; 𝒔) = 1.

The partition-of-unity criterion allows Ψ to be independent of the
size of N(𝒙).
It remains to define the neighborhood N and the barycentric

weight function𝑤 . This framework allows us to define a local po-
tential field with the desired properties, and there are many possible
options for defining N and 𝑤 . Furthermore, this formulation is
a specialization of the more general moving least squares (MLS)
framework for interpolating and approximating implicit surfaces
[Shen et al. 2004]. We use a locally compact weight function [Morse
et al. 2005; Ohtake et al. 2003; Öztireli et al. 2009], which is critical
for our application because we require sparse derivatives.

4.1.1 Weight Function. There are three main properties we require
from the weight function:

Locality: 𝑤 (𝒙 ; 𝒔) must vanish when 𝒙 and 𝒔 are sufficiently far
away.

Smoothness: 𝑤 should have continuous derivatives for the
resulting potential to be smooth at the zero iso-surface.

Interpolation: The zero iso-surface of Ψ must pass through
(or be close to) the sample points S.

We repurposed the weight function [Most and Bucher 2005],
which was originally used for interpolation in element-free Galerkin
methods. This weight function is defined as

𝑤𝑅 (𝒙 ; 𝒔) :=
�̃�𝑅 (∥𝒙 − 𝒔∥2)

∑

𝒔∈N𝑅 (𝒙) �̃�𝑅 (∥𝒙 − 𝒔∥2)
(9)

�̃�𝑅 (𝑟 ) :=

(

(𝑟/𝑅)2 + 𝜖
)−2
− (1 + 𝜖)−2

𝜖−2 − (1 + 𝜖)−2
, (10)

where 𝜖 ≪ 1 determines how closely the potential will approximate
the sample points and 𝑅 is a radius of influence that determines the
neighborhood:

N𝑅 (𝒙) := { 𝒔 ∈ S : ∥𝒙 − 𝒔∥2 < 𝑅 } .

This weight function is useful when 𝑅 is large, because 𝜖 can be
reduced to improve the interpolation of the samples in S. How-
ever, when 𝑅 is relatively small, we can use a simpler cubic weight
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i. ii. iii. iv. v.

Fig. 3. A cross section of the potential field Ψ(𝒙) generated by the cylinders from Figure 6 at various resolutions, with different kernels and parameters. The

shape of the cylinder cross section which is used to generate the potential is outlined in white in each of the examples. Starting with the heptagonal cylinder,

the potential fields generated by �̃�𝑅 with 𝜖 = 10−5 (i.), �̃�𝑅 with 𝜖 = 0.1 (ii.) and finally the potential generated by �̃�cubic
𝑅

(iii.) are shown. Points outside the

colored area have empty neighborhoods N𝑅 and are omitted from the contact solve. When using the �̃�cubic
𝑅

kernel, we can see that increasing the resolution

of the cylinder produces a similarly smooth contact surface (iv. and v.).

function given by

�̃�cubic
𝑅 (𝑟 ) := 1 − 3

( 𝑟

𝑅

)2
+ 2

( 𝑟

𝑅

)3
.

This function is generally smoother than �̃�𝑅 and is faster to com-
pute. However, it is not guaranteed to interpolate the provided
samples and it tends to exaggerate large curvature regions Ð con-
cavities in the samples become deeper and convexities become more
protruding. We found that �̃�𝑅 produces better results when local
deformations are larger, requiring larger values for 𝑅, but for smaller

deformations, �̃�cubic
𝑅

is sufficient. Figure 3 shows the potential gen-
erated by each kernel for a heptagonal cylinder.

4.1.2 Discretization. As the surface deforms, we need to know how
the samples and their corresponding normals change. In other words,
we need to be able to compute their derivatives. This calls for a more
concrete discretization scheme for the solid domain. Because we use
the standard tetrahedral finite element method to model elasticity,
we chose to sample the same mesh on the surface to generate our
implicit collision surface. We sample the tetrahedral mesh at the
centroids of all surface triangles1. The sample normals are computed
from each triangle (𝒑1,𝒑2,𝒑3) as

𝒏𝒔 =
(𝒑1 − 𝒑2) × (𝒑1 − 𝒑3)

∥(𝒑1 − 𝒑2) × (𝒑1 − 𝒑3)∥2
.

4.1.3 Contact Jacobian. For frictionless contact problems, the for-
mulation above is sufficient. However, when friction is involved,
we must also map tangential force impulses to the corresponding
degrees of freedom.

Our generalized coordinates correspond to vertex positions on a
tetrahedral mesh. We use this fact to construct the contact Jacobian.
Let 𝑸𝒔 (𝒙) ∈ R

3×3 be a minimal rotation matrix from the coordi-
nate frame at sample point 𝒔 to the coordinate frame at a contact
point 𝒙 such that

𝑸𝒔 (𝒙)𝒏𝒔 = ∇𝒙Ψ(𝒙) .

1We could have chosen to sample the mesh at the vertices and use an averaging scheme
to compute vertex normals, however this is more complex and would generate denser
Jacobian and Hessian matrices.

In words, the matrix 𝑸𝒔 (𝒙) rotates normals at sample points to align
with the gradient at contact points. We can compute 𝑸𝒔 (𝒙) as

𝑸𝒔 (𝒙) = 𝑰 + [𝒛]× + [𝒛]
2
×

1

1 + 𝒏𝒔 · ∇𝒙Ψ(𝒙)
.

where 𝑰 is the 3 × 3 identity, 𝒛 = 𝒏𝒔 × ∇𝒙Ψ(𝒙) and [𝒛]× is its
skew-symmetric matrix form. This matrix allows us to transport
any vector at a site 𝒔 into the coordinate frame of the contact at
𝒙 such that normal and tangent vectors at 𝒔 remain normal and
tangent respectively at 𝒙 .

Now if 𝒔 ∈ R3 |S | is a stacked vector of sample points and �̄� is the
stacked vector of mesh surface vertex positions, then we can write
the contact Jacobian at each contact 𝑖 as

𝑱 𝑖 =
𝜕𝒙𝑖

𝜕q
=
𝜕𝒙𝑖

𝜕�̄�

𝜕�̄�

𝜕q
=
𝜕𝒙𝑖

𝜕𝒔

𝜕𝒔

𝜕�̄�

𝜕�̄�

𝜕q
,

which allows us to use the kernel weights to intepolate velocity
contributions from mesh vertices. Since q corresponds to mesh

vertices and �̄� is a subset of those on the surface, we have that
𝜕�̄�
𝜕q

is a simple selection matrix. In our case, sample points are located
at surface triangle centroids, which means that 𝜕𝒔

𝜕𝒑 is the identity

matrix scaled by 1/3 if 𝒑 is a vertex of the triangle for sample 𝒔 and
zero otherwise. It follows that 𝜕𝒔

𝜕�̄� is a sparse block matrix of scaled

3 × 3 identity matrices.
Finally we can define

𝜕𝒙𝑖

𝜕𝒔
=

{

𝑤𝑅 (𝒙𝑖 ; 𝒔)𝑸𝒔 (𝒙𝑖 ) if 𝒔 ∈ N𝑅 (𝒙𝑖 )
0 otherwise

,

which is a block matrix of scaled rotations. The sparsity of 𝜕𝒙𝑖
𝜕𝒔 is

determined by the choice of N𝑅 .

4.1.4 Choosing 𝑅. Note that the discontinuity at 𝑟 = 𝑅 is only
problematic where the potential is negative (inside the solid), since
it produces a non-smooth contact boundary. The optimization is not
affected by discontinuities at positive potential values away from
the boundary. Thus we must ensure that the MLS surface has no
holes to prevent points from contacting the non-smooth boundary
inside the solid. Generally we enforce this manually by setting the
radius 𝑅 to be larger than half of the largest triangle diameter in the
input mesh. However, an adaptive scheme can produce a variable
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𝑅 depending on local feature size and maximum expected relative
velocities.

5 FRICTIONAL CONTACT

In this section wewill prescribe the necessary constraints to produce
a frictional contact response satisfying the Coulomb friction model.
We focus on Coulomb friction since it is an integral part of many
other friction models like Stribeck, Dahl, LuGre, and elastoplastic
friction [Liu et al. 2015].

5.1 Contact Space

Let Γ𝑐 denote the index set of all points of contact. For any vector
𝒚 ∈ R3 in physical space associated with a contact point from Γ𝑐 , we
define yN and yT to be the normal and tangential components of 𝒚
with respect to the contact surface. We call yN and yT contact space
coordinates. In general we use italic sans-serif font for quantities
in contact space coordinates, which implies a unique orthogonal
change of basis for each contact point. This notation is used consis-
tently in the following sections to describe velocities and impulses
at the point of contact.
To make this precise we designate a change of basis matrix

𝑩 = [𝑩N | 𝑩T] where 𝑩N and 𝑩T are block diagonal matrices with:

[𝑩N]𝑖,𝑖 := 𝒏𝑖 and [𝑩T]𝑖,𝑖 := [𝒕𝑖 | 𝒏𝑖 × 𝒕𝑖 ]

where 𝒏𝑖 is the unit normal and 𝒕𝑖 is a tangent direction at contact
point 𝑖 ∈ Γ𝑐 . This allows us to write the normal and tangential
components of the stacked vector 𝒚 as yN := 𝑩⊤N𝒚 and yT := 𝑩⊤T 𝒚

respectively.

5.2 The Coulomb Friction Model

We start with a disjunctive description of the Coulomb frictionmodel
[Bertails-Descoubes et al. 2011; Daviet et al. 2011]. The friction cone,
which confines the frictional contact impulse on the solid is defined
by

𝐾𝜇 :=
{

r = (rN, rT) ∈ R × R
2 : rN ≥ 0, rT ∈ 𝜇rND

}

,

where D := {y ∈ R2 : ∥y∥ < 1} is the open disc centered about
the origin. To formalize the Coulomb friction model, consider a

vN > 0

r = 0

take-off

v = 0

r ∈ 𝐾𝜇

sticking

∃𝛼 < 0,
vT = 𝛼rT
vN = 0

r ∈ 𝜕𝐾𝜇 \ 0

sliding

Fig. 4. Coulomb friction model. A stationary object (bottom surface in black)

is in contact with a moving object (curved surface in blue). The conditions

on the friction impulse r and velocity v can be described as a disjunction of

three cases as illustrated where the normal is assumed to be pointing up.

single point of contact where the deforming solid is above and a
fixed surface is below. In this scenario as illustrated in Figure 4, the

Coulomb friction law can be defined by a disjunction of three cases:

r = 0 and vN > 0 (take-off )

r ∈ 𝐾𝜇 and v = 0 and (sticking)

r ∈ 𝜕𝐾𝜇 \ 0, vN = 0 and vT ∈ {𝛼rT : 𝛼 < 0}. (sliding)

To be precise we will refer to rT as the frictional impulse and rN
as the contact impulse in the following sections.

5.3 Contact

If for a moment, we ignore the force of friction, (assume 𝜇 = 0),
then the cases (take-off ), (sticking), and (sliding) can be distilled into
rT = 0 and the complementarity condition

0 ≤ rN ⊥ vN ≥ 0 on Γ𝑐 , (SFC)

which indicates that only one of rN and vN may be non-zero at any
given time. This is called the Signorini-Fichera Condition (SFC)
[Fichera 1964; Signorini 1933].
Assuming that rt+ΔtT = 0, equation (7) with (SFC) become the

Karush-Kuhn-Tucker (KKT) conditions for the following constrained
optimization problem

minu 𝛾 (u)

subject to vN ≥ 0,
(11)

where 𝛾 (u) := 1
2





¤qt − u






2
M
+𝑊 (qt+Δt u) and vN = 𝑩⊤N 𝑱u. The dual

form of equation (11) reveals the role of the contact impulse rN as
the Lagrange multiplier:

(rt+ΔtN , ¤qt+Δt) = argmax
𝝀≥0

min
u
𝛾 (u) − 𝝀⊤vN, (12)

where rt+ΔtN is the optimal value of the Lagrange multiplier 𝝀 and

¤qt+Δt is the optimal value of the generalized velocity u as before.
The dual form in (12) is equivalent to (8) with a maximization over
positive contact impulses.
We use the dual form in our exposition since it explicitly lists

inputs and outputs of the optimization problem, however in our
implementation we aim to solve a constrained minimization.

5.3.1 Non-Penetration Constraint. To enforce impenetrability, we
constrain a selection of vertices on one simulation mesh 𝑘 to lie
outside the collision surface of all meshes except mesh 𝑘 itself rep-
resented by Ψ[q𝑘 ] (defined in Section 4) where q𝑘 are all the coor-
dinates in q that do not affect the deformation of mesh 𝑘 . We limit
ourselves to contact between disconnected meshes to ensure this
mutual exclusion. LetV𝑘 be the set of all vertices of mesh 𝑘 to be
constrained. Then the non-penetration constraint can be written as

Ψ[q𝑘 ] (𝒑) ≥ 0 ∀𝒑 ∈ V𝑘 . (13)

To simplify the following sections we group all constraints into one
vector 𝝓 (q) with the following component-wise definition:

𝝓𝑘,𝑖 (q) := Ψ[q𝑘 ] (𝒑𝑖 ) ∀𝒑𝑖 ∈ V𝑘 . (14)

This allows us to write the constraint simply as

𝝓 (q) ≥ 0. (15)

The union of all constrained vertex setsV𝑘 forms the complete set
of contact points in Γ𝑐 . Finally with the non-penetration constraint
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substituting (SFC), the problem becomes

(rt+ΔtN , ¤qt+Δt) = argmax
𝝀≥0

min
u
𝛾 (u) −

1

Δt
𝝀⊤𝝓 (qt + Δt u), (16)

where we apply backward Euler to 𝝓 to be consistent with the elastic
energy computation in 𝛾 (u).

5.4 Friction

Now suppose that 𝜇 ≥ 0. This means that the frictional contact
impulse must satisfy the complete Coulomb law we introduced in
Section 5.2. As we mentioned before, rt+Δt cannot be derived from
a single potential but it can be derived by minimizing two coupled
potentials [De Saxcé and Feng 1998]. We can use the result we
developed in the previous section but reintroduce the unknown
tangential impulse rt+ΔtT into the non-penetration problem (16):

(rt+ΔtN , ¤qt+Δt) = argmax
𝝀≥0

min
u
𝛾 (u)

−
1

Δt
𝝀⊤𝝓 (qt + Δt u) − v⊤T r

t+Δt
T , (17)

where vT = 𝑩⊤T 𝑱u. The remaining potential is responsible for re-

solving the friction impulse rt+ΔtT .

5.4.1 Maximal Dissipation Principle. For single point contact con-
ditions, frictional impulses for sliding can be derived from theMaxi-

mal Dissipation Principle (MDP) [Moreau 1973]. MDP states that the
frictional impulse at a point of contact maximizes negative work:

rT = argmax
y∈𝜇rND̄

−y · vT = argmin
y∈𝜇rND̄

y · vT, (18)

where D̄ is the closed unit disc and vT is the tangential relative
velocity vector. The minimization in (18) is trivially solved by

rT = −𝜇rN
vT

∥vT∥
(19)

on the disc when vT ≠ 0.
Equation (19) is in fact exactly the equation we get from the

(sliding) condition. To see this, note that since vT = 𝛼rT for some
𝛼 < 0, then it must be that 𝛼 = −∥vT∥/∥rT∥. Then substituting
in the ∥rT∥ = 𝜇rN condition from r ∈ 𝜕𝐾𝜇 , we get exactly (19). In

addition, if vT = 0, then all of 𝜇rND̄ solves equation (18), which cor-
responds to (sticking). Thus the (MDP) condition along with (SFC),
which handles (take-off ), corresponds to the whole Coulomb model
introduced in Section 5.2. This observation connects the Coulomb
friction formulation using (SFC) and (MDP) [Erleben 2017; Kaufman
et al. 2008] to the disjunctive formulation using (take-off ), (sticking)
and (sliding) [Bertails-Descoubes et al. 2011; Daviet et al. 2011; Li
et al. 2018].

We can now extend (18) to all the contacts in Γ𝑐 . First, let 𝑛 := |Γ𝑐 |

denote the total number contact points in the system. We define
D̄Γ𝑐

: R𝑛 → R2𝑛 to be the map from stacked contact impulses to a
cartesian product of closed discs in the tangent space of all contact
points in Γ𝑐 :

D̄Γ𝑐
(y) :=

∏

𝑖∈Γ𝑐

y𝑖 D̄ ⊂ R
2𝑛

where y𝑖 ∈ R is the 𝑖th component of y. Then (18) can be rewritten
for all contact points and in terms of generalized velocities as

rT = argmin
y∈D̄Γ𝑐 (𝜇rN)

y⊤𝑩⊤T 𝑱 ¤q. (MDP)

5.5 Frictional Contact Solutions

The remaining question is how to simultaneously solve the con-
tact and friction problems in (17) and (MDP) respectively. It is well
known that finding a global optimum for both optimization prob-
lems is NP-Hard [Kaufman et al. 2008], however we can focus on
finding an approximation to the global optimum.

5.5.1 Time-Splitting. Elastic impulses move through a typical soft
solid at a much slower rate than frictional contact impulses [Bertails-
Descoubes et al. 2011; Daviet et al. 2011; Kaufman et al. 2008; Li et al.
2018]. For instance, consider a rubber ball bouncing against the solid
ground. During the time step when contact initially occurs between
the ball and the ground, the contact impulse is felt immediately by
the ball, causing it to deform to avoid penetrating through the floor.
Given that the ball is soft enough, it takes multiple time steps for
elasticity to reverse the velocity field on every point on the ball
such that it bounces back. This may justify splitting the solve for
elasticity from frictional contact in certain scenarios.
However, implicit time integration allows us to take large time

steps, within which elastic and frictional contact impulses may be
comparable in magnitude. This is further exacerbated when the
hyperelastic material is stiff.
Furthermore, as previously mentioned in Section 2, friction and

contact must be resolved simultaneously.
These observations motivate a novel predictor-corrector scheme

(otherwise known as time-splitting) for solving the coupled vari-
ational problem in (17) and (MDP). Instead of splitting the entire
frictional contact solve completely from the elasticity optimization
[Bertails-Descoubes et al. 2011; Kaufman et al. 2008], we opt to
split only the incremental update to the friction impulse. We call
this mechanism friction forwarding since it effectively forwards the
computed friction impulses from one time step to the next as an
external force. In other words, we propose a three step algorithm:

1. Compute the intermediate (predictor) velocity ¤q∗ and contact
impulse r∗N by solving the elasticity problem subject to contact
constraints as well as friction impulses from the previous time
step:

(r∗N, ¤q
∗) = argmax

𝝀≥0
min
u
𝛾 (u) −

1

Δt
𝝀⊤𝝓 (qt + Δt u) − v⊤T r

t
T . (20)

2. Using r∗N as the initial guess for the contact impulse, solve
the modified staggered projections as described in ğ5.5.2, to
obtain the full frictional contact impulse

𝒓 t+Δt = (𝑩Tr
t+Δt
N ,𝑩Nr

t+Δt
T ), (21)

3. Update predictor velocity with the friction impulse corrector:

¤qt+Δt = ¤q∗ +𝑴−1 𝑱⊤ (𝒓 t+Δt − 𝒓 t) (22)

To solve the first step as written, we would require a non-linear
optimization solver capable of enforcing non-linear inequality con-
straints. This requirement can be relaxed by linearizing the contact
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constraint, converting (20) into

(r∗N, ¤q
∗) = argmax

𝝀≥0
min
u
𝛾 (u) − 𝝀⊤

(

𝜕𝝓

𝜕q

t
u +

1

Δt
𝝓t
)

− v⊤T r
t
T, (23)

where 𝝓t = 𝝓 (qt).
Note that friction forwarding is distinct from warm-start tech-

niques [Kaufman et al. 2008]. Our method uses the friction from the
previous time step to compute the velocity predictor ¤q∗, whereas
Kaufman et al. [2008] use the friction from the previous step only
as a starting guess for the staggered projections algorithm.

5.5.2 Modified Staggered Projections. In this section we will de-
scribe how staggered projections can be solved efficiently in contact
space without linearizing the friction cone defined by D̄Γ𝑐

.

First, let us define the projection operator 𝑃T : R
𝑛 × R3𝑛 → R2𝑛

of stacked impulses in physical space onto the set of contact tangent
discs as follows

𝑃T (rN; 𝝃 ) := argmin
y∈D̄Γ𝑐 (𝜇rN)

1

2
∥𝑩Ty − 𝝃 ∥

2
𝑴−1𝑒

. (24)

where𝑴−1𝑒 := 𝑱M−1 𝑱⊤ is the inverse of the effective mass (Delassus
operator) at contact points. Similarily we can define the projection
of impulses onto the set of contact normals:

𝑃N (𝝃 ) := argmin
y≥0

1

2
∥𝑩Ny − 𝝃 ∥

2
𝑴−1𝑒

. (25)

Given these two projection operators we can write down the
staggered projections scheme as

r𝑘T ← 𝑃T

(

r𝑘−1N ; 𝒛 − 𝑩Nr
𝑘−1
N

)

(26a)

r𝑘N ← 𝑃N

(

𝒛 − 𝑩Tr
𝑘
T

)

(26b)

starting with r0N = r∗N and a constant predictor

𝒛 = 𝑩Nr
∗
N + 𝑩T

(

rtT − 𝑩
⊤
T 𝑴𝑒 𝑱 ¤q

∗
)

. (27)

Our predictor is different from standard staggered projections. We
construct it from the normal and tangential components. The con-
tact impulse r∗N is computed in (20) as a Lagrange multiplier and can
be used directly as the normal component of the predictor. The nor-
mal component of −𝑴𝑒 𝑱 ¤q

∗ is ignored since the non-penetration is
already solved by the contact constraint. Finally any tangential fric-
tional impulses from the previous step must be added to −𝑩T𝑴𝑒 𝑱 ¤q

∗

to ensure that the predictor contains the full frictional impulse.
Unfortunately as written, (24) is a quadratic problem subject to

non-linear inequality constraints. As such, popular methods for fric-
tion simulation [Kaufman et al. 2008; Otaduy et al. 2009] often dis-
cretize the contact tangent discs to linearize inequality constraints.
This approach works, but can produce visible artifacts when the res-
olution of the disc discretization is low [Li et al. 2018]. To maintain
both speed and accuracy, we choose to reparametrize the contact
space into cylindrical coordinates instead, producing a non-linear
problem with bounds constraints. This allows us to rewrite (24) as

𝑃T (rN; 𝝃 ) := argmin
𝜽 ∈[0,2𝜋 ]𝑛

0≤𝜶 ≤𝜇rN

1

2
∥𝑩T𝑹 (𝜽 ,𝜶 ) − 𝝃 ∥

2
𝑴−1𝑒

, (28)

where 𝜽 and 𝜶 are stacked vectors of angles and radii in the tangent
plane of each contact respectively. Then 𝑹 : [0, 2𝜋]𝑛×[0,∞)𝑛 → R2𝑛

is a non-linear reparametrization operator that can be defined per
contact as 𝑹 (𝜃𝑖 , 𝛼𝑖 )𝑖 = (𝛼𝑖 cos(𝜃𝑖 ), 𝛼𝑖 sin(𝜃𝑖 )) for all 1 ≤ 𝑖 ≤ 𝑛.

The complete procedure is shown in Algorithm 1.

ALGORITHM 1: Velocity Step

Input:

𝑘𝑚𝑎𝑥 ← maximum number of friction solve iterations allowed

𝜖 ← tolerance for relative friction error

∆t← current time step

𝑴𝑒 ← effective mass (Delassus operator)

M← generalized mass matrix

qt, ¤qt ← previous generalized positions and velocities

rtT ← previous friction impulse

Output: ¤qt+∆t ← generalized velocity for the next time step

1 begin Solve the constrained optimization problem (23):

2 (r∗N, ¤q
∗) ←

{

argminu 𝛾 (u) − v⊤T r
t
T

s.t.
𝜕𝝓t

𝜕q u + 1
Δt𝝓

t ≥ 0

3 end

4 𝒛 ← 𝑩Nr
∗
N + 𝑩T

(

rtT − 𝑩
⊤
T 𝑴𝑒 𝑱 ¤q

∗
)

/* predictor impulse (27) */

5 begin Solve friction problem to convergence:

6 r0N ← r∗N
7 for 𝑘 ← 1 to 𝑘𝑚𝑎𝑥 do

8 r𝑘T ← 𝑃T

(

r𝑘−1N ; 𝒛 − 𝑩Nr
𝑘−1
N

)

9 r𝑘N ← 𝑃N

(

𝒛 − 𝑩Tr
𝑘
T

)

10 𝒓𝑘T ← 𝑩Tr
𝑘
T

11 𝑒𝑟𝑟 ←
∥𝒓𝑘

T
−𝒓𝑘−1

T
∥2
𝑴−1𝑒

∥𝒓𝑘−1
T
∥2
𝑴−1𝑒

12 if 𝑒𝑟𝑟 < 𝜖 then

13 break

14 end

15 end

16 end

17 𝒓 t+∆t ← 𝑩Tr
𝑘
T + 𝑩N (r

𝑘
N − r

∗
N) /* (21) */

18 ¤qt+∆t ← ¤q∗ +M−1 𝑱⊤ (𝒓 t+∆t − 𝒓 t) /* (22) */

6 RESULTS

The following examples are generated using our Houdini 18 [SideFX
2018] plugin written mainly in the Rust programming language
[Matsakis and Klock 2014] and backed by the interior point opti-
mization package, Ipopt [Wächter and Biegler 2006]. Rust provided
us with additional confidence in our numerical results due to its
strong memory-safety guarantees without sacrificing performance.
Ipopt allowed us to focus on the core method without the need for
a custom constrained optimization solver. We used Intel MKL with
the PARDISO direct linear solver as a backend for Ipopt.
For nearest neighbor lookup, we used an off-the-shelf R*-tree

[Altmayer 2020] with bulk loading. The tree is rebuilt for each
iteration where the implicit surface samples are updated.
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Houdini
Ours

Frame 1

𝜇 = 0.177

𝜇 = 0.177

𝜇 = 0.176 Frame 1212 Frame 2261

(a) Block Slide. A simulation of a soft FEM block sliding across the ramp. Houdini’s simulation fails to produce adequate friction forces to stop the block from

sliding off at 𝜇 = 0.177 (top). Our method successfully stops the block from sliding off at 𝜇 = 0.177 (middle) and expectedly allows it to slide off at 𝜇 = 0.176

(bottom).

[Li et al. 2018]
Ours

𝜇 = 0.177
𝜇 = 0.176

Frame 1

Coarse Medium Fine

Frame 193 Frame 1732

(b) Cloth Slide. A square piece of cloth with varying resolutions slides down the ramp with varying coefficients of friction as shown. The lightly colored ramp

has a coefficient of friction of 𝜇 = 0.176, while the darker ramps have a higher coefficient at 𝜇 = 0.177. While [Li et al. 2018] produces stopping at the coarsest

level (left-most ramp), the simulation fails to produce adequate friction forces for higher resolutions. (Not shown) On the 𝜇 = 0.176 ramp, the method by

[Li et al. 2018] results in slipping at all resolutions albeit with significantly different accelerations. Our method (middle and right-most ramp) produces a

consistent friction behavior regardless of resolution as shown.

Fig. 5. Ramp Slide. Simulations of objects sliding on a rigid ramp inclined at exactly 10 degrees with the horizontal. The physical minimum friction coefficient

required for sticking as computed from the ramp incline is 𝜇 = tan(𝜋/18) ≈ 0.176326.

Some of our results are compared with Houdini’s FEM cloth solver
to demonstrate how our method measures up to a popular industrial
FEM implementation, which could be used to solve similar problems.
It is worth noting that Houdini’s contact model uses penalty forces.
To establish a point of reference with academic works, we compare
also against the method by Li et al. [2018] where we disable cloth
remeshing to produce an identical cloth mesh between the two
methods. We plan to release our simulator as open source software
to encourage further development and improve reproducibility of
our results.
All examples were run on the AMD Ryzen Threadripper 1920X

CPU with 12 cores, 24 threads at 3.7 GHz boost clock and 32GB
RAM. We used Blender 2.8 [2019] and ParaView 5.7 [Ahrens et al.
2005] for all generated images and videos.
We used 𝜖 = 10−4 in all simulations. We pruned contacts with a

potential value (divided by bounding box size) of greater than 10−4

from the friction solve.
Projections (25) and (28) are solved to convergence with Ipopt

using a residual tolerance of 10−10. Elasticity and dynamics in (23) is
also solvedwith Ipopt with a tolerance of 10−9. We rescaled variables
and objective functions such that all first order derivatives are close
to 1 in magnitude.

In examples involving cloth, it is always the volumetric solid that
produces the implicit contact field and the cloth collides at cloth
vertices.

Ramp slide. A soft block made from 320 tetrahedra slides down a
slope at 𝜃 = 10 degrees from the horizontal with varying coefficients
of friction in Figure 5a. This example demonstrates the ability of our
method of producing precise expected friction response. Ourmethod
is able to stop the cube from sliding off the ramp with a value of 𝜇
within 0.001 of the expected stopping coefficient 𝜇 = tan(𝜃𝜋/180).

A similar experiment is performed with cloth to compare our
method to [Li et al. 2018] using their implementation. While stop-
ping is observed at 𝜇 = 0.177 with their method in certain configura-
tions, even modest scaling ratios can produce vastly different results
at larger time steps. For instance, we compare how a square piece of
cloth of varying resolutions slides down a long ramp in Figure 5b. In
contrast to [Li et al. 2018] we are able to produce consistent friction
behavior at all resolutions.

Cloth on a cylinder. In Figure 6 we drape a patch of cloth on
a cylinder to demonstrate the contact fidelity of our method and
compare it against [Li et al. 2018] and Houdini’s FEM cloth simu-
lation. Figure 6a demonstrates the artifacts produced by standard
polygonal collision detection and response schemes, and shows
how our method overcomes these limitations. Polygon based con-
tact schemes require fine resolutions to improve contact fidelity,
whereas our approach naturally produces smooth contact surfaces
even with coarse discretizations. In this example, our method al-
lows the cloth to stick to the cylinder. While Houdini’s simulations
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i. ii. iii. iv.

(a) Sticking. First three cylinders from the left showHoudini’s

cloth simulation at different cylinder discretizations. The last

cylinder demonstrates our cloth simulation. This example

uses 𝜇 = 0.2, and the cloth is initially offset with 0.8m vertical

distance between the ends. Our method allows the cloth to

stick, while Houdini’s fails to stick even at higher resolutions.

Note that the mesh must be sampled uniformly in order to

produce an implicit surface without bumps, as shown by

the uniform triangulation of the last cylinder. The actual

resulting contact surface is smooth as shown in Figure 3.

i. ii. iii. iv.

Frame 124 Frame 686

(b) Reliability. First three cylinders from the left show cloth simulation from [Li et al. 2018]

at different cylinder discretizations. The last cylinder demonstrates our cloth simulation at

the coarsest sampling, which shows symmetric sliding without artifacts. This example uses

𝜇 = 0.12 and Δt = 0.02, with the same configuration as in Figure 6a. In this example, the

middle two cylinders demonstrate how additional artificial friction can be introduced due

to polygon-based contact. Collision detection schemes can also be susceptible to artifacts as

seen on the left-most cylinder.

i. ii. iii.

iv. v. vi.

vii. viii. ix.

(c) Resolution independence. [Li et al. 2018] (top row) and

Houdini’s cloth simulation (middle row) is compared with

our method (bottom row) for different cylinder and cloth

resolutions with 𝜇 = 0.13. This example shows that our con-

tact model produces similar results regardless of resolution,

while a polygon based contact resolution such as Houdini’s

or [Li et al. 2018] may produce vastly different behaviors.

𝜇 = 0.12 0.13 0.14 0.15 0.16

i.

ii.
iii.

iv. v.

(d) Coefficient of friction. From left to right, the coefficient

of friction 𝜇 is varied from 0.12 (leftmost) to 0.16 (right-

most) by increments of 0.01. The initial draped cloth is off-

set by 0.4m from being balanced (i.e. the vertical distance

between the two sides is 0.8m). Slipping is consistently de-

creased as the coefficient of friction is increased from left

to right with correct stopping at 𝜇 > 0.14 as analytically

computed in Appendix B. The material properties were

chosen to prevent excessive stretching, which allows the

simulation to reproduce the analytic stopping coefficient.

i.
ii.

iii.
iv. v.

(e) Sliding consistency. Here

the cloth is draped with an

increasing offset from being

perfectly balanced. From right

to left, the initial offset dis-

tance is varied from 0m to

0.64m in increments of 0.16m.

This example demonstrates a

consistent response to the in-

crease in force difference be-

tween the two sides.

Fig. 6. Cloth on a cylinder. A patch of cloth draped over a static cylinder 6m in length with radius of 0.5m. For all examples here, we used the cubic kernel to

generate the contact field around the cylinder. Here we used Δt = 0.01s (unless otherwise stated) and all Houdini’s cloth simulations are run with 4 collision

and simulation substeps. Material parameters between different simulators are matched on a best effort basis.

improve the friction response with higher resolutions it ultimately
fails to stick2.
In Figure 6b we use a similar setup to compare against the non-

smooth friction solver from [Li et al. 2018]. This demonstrates that
the sliding artifacts are not merely caused by a penalty based fric-
tion solve used in Houdini but really from polygon-based contact.
Note that under mesh and timestep refinement, our method tends
towards the same solution as in [Li et al. 2018], although exact
correspondence would require identical material models.
Figure 6c demonstrates how an implicit surface contact model

allows us to produce consistent sliding behavior irrespective of res-
olution. In contrast, polygonal contact models like [Li et al. 2018] or

2Sticking is not achieved even after increasing substeps and collision passes to 20, as
well as increasing 𝜇 to 1.

Houdini’s can produce vastly different contact behaviors depending
on mesh resolution.

We are able to demonstrate precise control over slipping behavior
by changing the friction coefficient 𝜇 in Figure 6d. Additionally in
Figure 6e we show that adjusting the configuration of the cloth will
cause it to slip when 𝜇 is held constant.

Performance numbers shown in Table 1 indicate that our method
is comparable to existing implementations for modest resolutions.
In order to produce better scaling with resolution, we recommend
using an iterative linear solver.

Ball spin. In Figure 7 a spinning tennis ball with a hollow core (as
shown in the inset figure) is dropped onto a slanted ramp to produce
a bounce commonly observed in racket sports and golf. We experi-
ment with 𝜇 being 0.01, 0.5, and 1.0 to produce a deflected bounce
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Example # Elements Method 𝜇 Time Seconds
Frame

Sticking

i.
2K Houdini 0.2

1:36 0.19
ii. 1:26 0.17
iii. 1:25 0.17

iv. 2K Ours 0.2 1:32 0.19

Reliability

i.
2K [Li et al. 2018] 0.12

3:12 0.38
ii. 2:38 0.32
iii. 2:45 0.33

iv. 2K Ours 0.12 0:09 0.09

Resolution
independence

i. 392
[Li et al. 2018] 0.13

0:35 0.07
ii. 2K 2:30 0.30
iii. 7K 7:17 0.87

iv. 392
Houdini 0.13

1:52 0.22
v. 2K 2:19 0.28
vi. 7K 5:54 0.71

vii. 392
Ours 0.13

0:17 0.03
viii. 2K 0:38 0.08
ix. 7K 3:56 0.47

Coefficient
of friction

i.

2K Ours

0.12 0:26 0.05
ii. 0.13 0:33 0.07
iii. 0.14 0:35 0.07
iv. 0.15 1:10 0.14
v. 0.16 1:17 0.15

Sliding
consistency

i.

2K Ours 0.15

1:13 0.15
ii. 1:25 0.17
iii. 1:19 0.16
iv. 0:54 0.11
v. 0:51 0.10

Table 1. Timing results (m:ss) over the length of entire corresponding simu-

lations for the Cloth on a cylinder example from Figure 6.

𝜇 = 0.01

𝜇 = 0.5

𝜇 = 1.0

(a) (b)

Fig. 7. Ball spin. (a) Three identical hollowed balls with different coefficients

of friction (as shown) are dropped on a ramp sloping down to the left. (b) The

center-of-mass trajectory of the ball with the largest coefficient of friction

(𝜇 = 1) is plotted. After the first two bounces up the slope caused by the spin

of the ball, friction on the ball causes it to change spin directions temporarily

before the ball looses enough energy and starts to roll down the slope.

with varying intensity. The spin is 100 degrees
per second in all 3 examples. Our method cor-
rectly produces larger bounce deflections for
larger coefficients of friction. We are also able to
reproduce the subtle behavior of the ball bounc-
ing up the slope (to the right) after it has already
started moving down the slope (to the left) due
to tangential elasticity forces at the point of contact, which convert
the elastic potential into rotational energy. This phenomenon can
easily be observed in bouncy rubber balls (SuperBalls).

Frame 956 Frame 1022 Frame 1132

Fig. 8. Stick-slip chatter. A stool slides down a ramp demonstrating stick-slip

chatter of the stool legs.

Fig. 9. Belt drive. The small driver cylinder is rotated at an accelerated rate,

and abruptly stopped to show slipping and sticking for different values of 𝜇.

Stool slide. Our method is able to produce the stick-slip chatter
phenomenon on the legs of a stool as it slides down a subtle 10
degree slope as show in Figure 8. As the stool slides down the ramp,
each leg of the stool oscillates between sticking and slipping friction
modes at the points of contact with the ground. This occurs due
to the elasticity of the stool, which periodically shifts the pressure
between the front and hind legs of the stool. As with the other ramp
slide examples, we use the ramp to produce the implicit field.

Belt drive. As shown in Figure 9, we simulate a belt drive mech-
anism where a smaller rigid cylinder drives a larger FEM cylinder
connected with a belt loop. The friction coefficient between the belt
and the small driver cylinder is kept constant at 𝜇 = 0.5. Setting
the friction coefficient between the large soft cylinder and the belt
to 𝜇 = 0.2 induces sticking behavior, which successfully drives the
soft cylinder around its axis and stops it when the driver abruptly
stops. When the coefficient of friction is reduced to 𝜇 = 0.02, the
soft cylinder is accelerated as before, however it slips through the
belt when the driver stops.

Glass pinch. Rigid body simulation is usually insufficient to solve
various control problems like picking up a rigid object [Balasubra-
manian and Santos 2014; Kry and Pai 2006]. We simulate a rigid
whiskey glass being pinched and lifted between the index finger and
the thumb of an animated soft hand model as shown in Figure 1. Our
method produces accurate deformation at the contact patch on the
tip of each digit. The shape of the contact patch remains consistent
after the grasp as observed on real human digits. We show a detailed
friction vector field on the tip of each digit for the grasp, lift and
hold stages of the simulation in Figure 10. In the grasp stage, friction
is pointing towards the middle of the contact patch to oppose the
spreading of flesh around the contact surface as expected. In the lift
and hold stages, an interesting pattern emerges on the index finger
pad caused by a subtle tilt of the glass. Since the contact pivots are
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Initial

Grasp

Lift

Hold

(a) Index finger. (b) Thumb.

Fig. 10. The friction impulse (in N·s) vector field on the index finger and

the thumb from the glass pinch simulation in Figure 1. Four stages of the

simulation are captured for each digit: initial, grasp, lift and hold. The initial

configuration is the frame captured immediately before any contact has

occured. In the grasp stage, the finger and thumb first come into contact

with the glass. In the lift stage the hand is moving up. Finally in the hold

stage the hand is stationary.

not perfectly aligned between the index finger and the thumb, the
glass tilts slightly towards the index finger and into the hand. The
tilt towards the index finger transfers the load from the tangential
component to the normal on the finger pad, which is why friction
forces are larger on the thumb. Finally, the tilt towards the hand
applies a torque onto the index finger pad causing the spiral pattern
of the friction vector field. In this example, the hand mesh generates
the implicit contact field, and the glass collides at vertices, although
the opposite configuration would work as well.

Ball on a trampoline. To generate a more complex interaction be-
tween soft objects, we drop a hollowed ball onto a trampoline which
is then contracted and stretched as shown in Figure 11. This example

further demonstrates how a stretched thin sheet can reliably inter-
act with another soft object represented by an implicit surface. The
animation clearly demonstrates the tangential two way coupling
between the ball and the trampoline as the ball rolls through the
well of the trampoline and finally rests near the center as expected.

Armadillo tank top fitting. We fit a sleeveless shirt on an animated
armadillo model to demonstrate an application of our method for
simulated soft tissue cloth fitting. This application necessitates an
accurate friction model to achieve a realistic fit.
We compare a frictionless fit against one with 𝜇 = 0.2 against a

rigid armadillo in Figure 12a. Herewe can see that friction is required
to keep the straps from sliding off the armadillo’s shoulders.

To gain more realism we simulate the soft tissue of the armadillo,
again with and without friction in Figure 12b. In the soft fit, the
animation reveals additional effects of frictional contact, namely
the transfer of dynamic motion between the body and cloth at the
point of contact. This scenario demonstrates how our method can
be used for predicting the utility of active wear that controls soft
tissue displacement during dynamic movement.

7 LIMITATIONS

Self-contact. A limitation of our method is self-contact, which is
excluded from our formulation. Self-contacts impose an additional
difficulty of pruning neighborhoods N𝑖 for each contact 𝑖 since a
mesh vertex should not collide against the surface generated by
its neighbors. However this restriction can be more complicated in
creases where colliding surfaces may be in the same neighborhood.
We leave this important extension as future work.

Performance and scalability. Choosing an off-the-shelf non-linear
solver like Ipopt allowed us to side-step the arduous and error-
prone process of implementing a robust Newton-Raphson solver
capable of enforcing linear inequality constraints. However, the
use of a direct linear solver has some impact on the scalability of
our method to larger meshes. In addition, our method relies on
the explicit construction of the Delassus operator, which imposes
scalability limitations in the total number of contacts, however, the
Delassus operator has been used in contexts with a much larger
contact count, such as hair [Daviet et al. 2011]. We aim to investigate
other performance bottlenecks in the future.

Sampling. In contrast to polygon based methods for resolving
contacts, our method may require a finer sampling of the surface to
produce a sufficiently accurate approximation (e.g. in the Belt drive
example, the sharp corners of the cylinder raise the Hausdorff error
up to 1.4%). Good quality finite element meshes tend to be locally
uniform on the surface, which is why we chose the finite element
mesh to produce the implicit field directly. However, when used on
a static collision mesh (like with the cloth on cylinder example), our
method can impose additional sampling steps. Thus we recommend
that MLS surfaces are used on deformable organic objects, which
tend to have locally uniform tesselations and few naturally sharp
corners or thin features. For this reason our method doesn’t directly
deal with sharp corners, but it can do so if extended with additional
remeshing and optimization techniques [Li et al. 2018; Macklin et al.
2020].
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Frame: 1 13 17 31 223 245 264 365

(a) Low resolution ball on a trampoline.

Frame: 1 13 17 31 223 244 268 365

(b) High resolution ball on a trampoline.

Fig. 11. Ball on a trampoline. A hollowed ball is released onto a stretched trampoline in frames 1 to 150. The trampoline is then contracted and stretched

even more to launch the ball into the air in the remaining frames. This example demonstrates reliable frictional coupling between the trampoline closely

conforming to the ball. In this example we used 𝜇 = 0.2, and the cubic kernel for generating a smooth implicit contact surface.

Example # Elements # Vertices Δt (s) Frames ℎerr 𝜇 𝑛 𝑘tmax/𝑘tavg 𝑖kmax/𝑖kavg Time Seconds
Frame

Ball spin
9K 2K 0.005 1500 0.03%

0.01 867 3/0.41 12/6.6 0:07:32 0.30

0.5 867 3/0.74 12/6.7 0:08:55 0.36

1.0 860 3/0.76 13/6.8 0:08:52 0.35

Stick-slip chatter 11K 3K 0.0003̄ 18000 <0.01% 0.2 479 3/1.94 17/14.3 2:40:58 0.54

Belt drive 8K 2K 0.005 2500 1.4%
0.02 610 6/4.1 53/13.3 0:24:03 0.58

0.2 620 6/4.0 43/13.5 0:21:23 0.51

Glass pinch 45K 9K 0.0001 10000 0.2% 0.15 989 3/1.0 38/15.0 8:31:57 3.07

Ball on a trampoline
8K 2K 0.01 1500 0.2% 0.2 548 4/2.1 48/13.6 0:10:48 0.43

58K 15K 0.005 3000 0.02% 0.2 2963 8/2.4 182/27.5 3:56:30 4.73

Armadillo rigid fit 5K 3K 0.004 1000

0.2%

0 2542 0:08:09 0.49

0.8 2559 3/1.5 14/12.1 0:12:26 0.75

Armadillo soft fit 88K 22K 0.001 4000
0 2608 5:57:17 5.36

0.8 2609 5/1.6 53/17.2 8:05:47 7.29

Table 2. Timing results (h:mm:ss) over the length of entire corresponding simulations. The # Elements column counts over triangles and tetrahedra with at

least one free vertex. 𝑛 is the maximum number of contact constraints. 𝑘tmax and 𝑘tavg are the maximum and average numbers of friction steps resp. taken per

timestep respectively where the friciton solve converged. 𝑖kmax and 𝑖kavg are the maximum and average numbers of Ipopt iterations resp. taken per friction

projection step (28). ℎerr is the initial Hausdorff distance of the MLS surface to the surface of the tetrahedral mesh divided by the maximum dimension of the

mesh’s bounding box.

Friction Convergence. In all our examples, the friction solve con-
verged to within 𝜖 = 10−3, however a few instances (less than
30 frames in total from all examples) it failed to converge below
𝜖 = 10−4. We believe that convergence can be further improved by
exploring other friction solvers such as the Fischer-Burmeister for-
mulation [Daviet et al. 2011; Kaufman et al. 2014; Macklin et al. 2019].
However, non-convergence did not seem to have any noticeable
effect on contact fidelity in our examples.

8 DISCUSSION AND CONCLUSIONS

Friction Forwarding. The choice of time splitting in our approach
is critical to producing robust frictional responses. Figure 13 shows
the effect of forwarding the friction impulse to the next time step.
This technique allows friction to affect the elasticity solve, and

as a result produces a more accurate prediction for how friction
propagates through the rest of the elastic body. Figure 14 shows the
artifacts produced when friction forwarding is disabled in the glass
pinch example, by removing rt from (20) and (22).

Flexibility and Extensibility. Because our method does not rely on
polygonal collision detection schemes, it can be used on a variety of
surface representations. The only required data is points with asso-
ciated normals. This means our frictional contact model can be used
with meshless methods and with raw point clouds generated by 3D
scanners. Furthermore, our method is agnostic to the choice of linear
solvers and non-linear constrained optimization algorithms, which
simplifies future improvements and use of third-party libraries with
better performance characteristics.
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(a) Rigid fit.

(b) Soft fit.

Fig. 12. Armadillo tank top fit. A tank top is fit onto an animated Armadillo

model. (a) shows the garment on a rigid armadillo without friction (left) and

with 𝜇 = 0.8 (right). A more realistic scenario (b) demonstrates the garment

being fit on a soft armadillo model without friction (left) and with 𝜇 = 0.8

(right).

Conclusions. We have introduced a novel approach for solving
frictional contact problems with smooth elastic solids. Our solution
is presented in a variational form, which allows for easy modifica-
tions with additional constraints. This formulation maintains loose
coupling between the frictional contact solve and elasticity via fric-
tion forwarding, which permits different methods to be used in each
step. We introduced a novel approach for contact resolution using
smooth local implicit surfaces, which avoids additional collision
detection schemes. Finally, our implicit surface formulation permits
tangential force feedback using a parallel transport approximation.

Fig. 13. An FEM block of tetrahedra is dragged from right to left from the top

vertices. The block slides along a horizontal plane while slightly compressed.

The top frame shows the simulation without friction forwarding (i.e. rt = 0

in (20) and (22)). The bottom frame shows the same simulation with friction

forwarding. The vertices near the front of the cube are better aligned because

friction is forwarded to the elasticity solve (20). As a result, friction is felt by

vertices not directly in contact with the surface within a single time step.

Fig. 14. A closeup of the thumb shortly after the grasp phase of the glass

pinch example from Figure 1. The left image shows the thumb surface

without friction forwarding , while the right shows the same simulation

with friction forwarding. Note that in both cases friction was solved to

convergence.

Our method is validated visually and by comparison with a solution
used widely in the visual effects industry.
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(a) Non-smooth contact. (b) Smoothed contact.

Fig. 15. This illustration depicts the initial configuration of simplification for

a common contact scenario. A single vertex marked by the blue dot is placed

inside a quadratic potential (with a minimum is at (0,-1)), and subjected

to lay in the blue area bordered by the contact surface in black. In (a), the

solution (final vertex position) to the elasticity problem subject to contact

constraints lies at a non-differentiable point on the implicit contact surface,

which causes typical gradient-based optimizers to diverge. In (b), the contact

surface is smoothed producing a differentiable constraint function which

allows gradient-based iterations to converge at the minimum located at the

bottom of the smoothed cusp. The color bar on the side of each plot indicates

the iteration number at each point on the path taken by the optimizer.
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A SMOOTH VERSUS NON-SMOOTH IMPLICIT

CONTACT

In this section we motivate the use of a custom smooth implicit
surface over the standard signed distance field for use in constrained
optimization for contact resolution as presented in Section 4.
Consider a crude simplification of the contact problem in the

context of polygonal contact, where a single vertex on a larger mesh
at position 𝒙0 is deformed to lay in a crevice between two polygons.
Suppose that we use the signed distance field (SDF) of the polygonal
surface as the constraint in our elasticity minimization problem for
contact resolution. In Figure 15awe illustrate a scenario where a non-
smooth implicit surface causes gradient-based optimizers to diverge.
In Figure 15b, we illustrate the same simplified example, but with a
smooth surface approximation at the cusp. Here, the derivative is
well-defined at the minimum, which allows gradient-based methods
to converge. Recent work has improved signed distance contact
handling by smoothing the SDF specifically for edge-edge contact
pairs [Li et al. 2020]. In our work, we smooth the entire surface
using MLS, rather than smoothing polygon cusps directly, which
maintains all of the artificial polygonal facets. These facets may be
undesirable when modelling organic objects. Note that this issue
affects any line-search method, which uses the constraint Jacobian
for computing the descent direction.

𝜃𝑅 •𝑇 (𝜃 )

𝑇 (−𝜋2 ) ↓ ↓ 𝑇 ( 𝜋2 )

Fig. 16. Cloth on cylinder. This diagram shows a cross-section of our cloth

on cylinder configuration for the capstan equation derived in Appendix B.

The cloth (in blue) rests on the cylinder (in black), which has radius 𝑅.𝑇 (𝜃 )

is the tension on the cloth at each point on the top semi-circle.

B CLOTH ON CYLINDER STOPPING FRICTION

To compute the correct stopping coefficient for the cloth on cylinder
example, we will start with a derivation for the capstan equation:

𝑑𝑇

𝑑𝜃
= 𝜇𝑇

where𝑇 is the tension on the cloth along each point of contact with
the cylinder and 𝜃 is the angle of the contact point from the vertical
as shown in Figure 16. When the tension caused by the weight of
the cloth at every contact point is included, we get

𝑑𝑇

𝑑𝜃
= 𝜇𝑇 + 𝜇𝑅𝑏 cos(𝜃 ) − 𝑅𝑏 sin(𝜃 ) (29)

where the additional two terms describe the contribution of the
normal and tangential components of the gravitational pull at every
contact point. Here 𝑅 is the radius of the cylinder, and 𝑏 = 𝜌𝑔𝑤

where 𝜌 is the cloth mass density, 𝑔 is gravitational acceleration and
𝑤 is the width of the cloth (size along the length of the cylinder).
The general solution to (29) is

𝑇 (𝜃 ) = 𝐶𝑒𝜃𝜇 +
−𝑅𝑏𝜇2 cos(𝜃 ) + 2𝑅𝑏𝜇 sin(𝜃 ) + 𝑅𝑏 cos(𝜃 )

𝜇2 + 1

where𝐶 is the constant of integration. Since we know the weight of
the cloth at each end, 𝑇 (−𝜋2 ) and 𝑇 (

𝜋
2 ), we can determine 𝐶 to be

𝐶 = −
𝑏 (𝜇𝑅 − ℓ)

2 cosh(
𝜋𝜇
2 )

where ℓ is the total length of the cloth. Now by equating the weight
at with 𝑇 (−𝜋2 ), we will get

ℓ−𝜋/2 = −
(𝜇𝑅 − ℓ)𝑒−

𝜋𝜇
2

2 cosh(
𝜋𝜇
2 )
−

2𝑅𝜇

𝜇2 + 1
(30)

We can now plug in all known lengths and solve for 𝜇. For the
example in Figure 6d and assuming that ℓ−𝜋/2 represents the shorter
end, we have

ℓ−𝜋/2 = 0.8, ℓ = 4, 𝑅 =
1.6

𝜋
(31)

where all values are given inmeters. Finally, the root of (30) given (31)
is

𝜇 ≈ 0.14015161654962588...
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