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Abstract. The goal of this talk is to introduce the idea
of classical and quantum information as it appears in
the theory of communication and more generally, infor-
mation theory as proposed by Claude Shannon in 1948.
We address the fundamental problem ”of reproducing at
one point either exactly or approximately a message se-
lected at another point.”[1] We will define and motivate
the idea of entropy as a measure of information in or-
der to quantify the ability for communication channels
to transmit information reliably. In addition we will ex-
tend the definition of entropy from classical states to
general quantum states.

This talk assumes an audience with basic linear alge-
bra background. A familiarity with bilinear maps, linear
operators and basic analysis may be helpful.

1. Introduction

People have been studying information for decades. Transmis-
sion of information through signals over long distances, storage of
information on paper, on magnetic strips, and data compression,
are all part of this study among other important things. With
the invention of quantum computing came a generalization of the
mathematical model of information theory, as quantum mechanics
introduces new properties to information.

This talk will introduce the mathematical description of com-
munication through classical and quantum channels. In particular
we will discuss the capacity of a particular classical channel, and
time-permitting quantum capacities of quantum channels. The
purpose of this talk is to briefly introduce the theory of communi-
cation, and to build a general understanding of information.

1.1. Introduction to information theory. Information theory
was invented by Claude Shannon in his paper from 1948 titled “A
mathematical theory of communication” [1], where he solved a lot
of the problems involved in classical information theory. The main
problem in his theory is clearly outlined by the following quote:

“The fundamental problem is that of reproduc-
ing at one point either exactly or approximately
a message selected at another point.”

(Claude Shannon, 1948)

Real channels are unreliable because the physical noise in the
environment disrupts the signal being transmitted (e.g. thermal
fluctuations, foreign interacting signals). For example:

Tower
radio waves−−−−−−−→ Receiver

Voice
sound waves−−−−−−−−→ Ear

Modem
wire−−→ Modem

File
disk drive−−−−−−→ File

Therefore we need to develop methods to transmit information
reliably through such channels, by introducing some redundancy
and clever methods.
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Figure 1.1. Using a noisy channel for reliable com-

munication

Consider the simplest noisy classical channel, the binary sym-
metric channel (BSC), which transmits a bit from Alice to Bob,
where it gets flipped with probability p.
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Figure 1.2. Binary symmetric channel.

This is not a realistic channel, just a mathematical model of a
channel; realistic channels often have correlation between consec-
utive uses, or uses of the channel in parallel. It is not enough to
send a single bit over this channel to get reliable communication
if p happens to be sufficiently high. Say p = 0.1, then 10% of
the time we will get an incorrect bit of information on the receiv-
ing end. We need to develop a system that can provide us with
more reliable communication, without modifying the channel. For
instance consider a repetition code. For every bit of data to be
sent, we duplicate it three times and send those three through
the channel, so that we determine what the original bit was on
the receiving end by taking a majority vote over the transmitted
bits. Now if we send one bit with this encoding, we can have the
following outcomes:

0
Encoding−−−−−−→ 000

Noisy−−−−−→
Channel

{
000, 001, 010, 100→ correctable
111, 110, 101, 011→ erroneous

1
Encoding−−−−−−→ 111

Noisy−−−−−→
Channel

{
111, 110, 101, 011→ correctable
000, 001, 010, 100→ erroneous

Meaning that the probability of an erroneous outcome will be pe =
p3+3p2(1−p) = 3p2−2p3. So if p = 0.1 as before, then pe = 0.028,
which is much less than 0.1, so we have improved the reliability of
data transmission for this channel.

In order to quantify how effective the channel is for communi-
cation, consider the rate of communication, R = m/n, which is the
number of bits we would like to send m, divided by the number
of times we have used the channel (or the size of the encoding),
n. We demonstrated how we can decrease the probability of error
by decreasing the rate of communication of our channel using a
particular error correcting code. A point (R, pe) for which there
exists a corresponding error correcting code is called achievable.
Now the question is, what is the best (highest) rate at which we
can communicate information reliably (meaning with arbitrarily
small error). If we follow the repetition codes as plotted in Fig-
ure 1.3, it would seem that we must decrease the rate to zero in
order to get reliable communication. However in 1948, Claude
Shannon showed that this is not true in general, and the supre-
mum of achievable rates that provide reliable communication (also
called the capacity of the channel) is NOT zero for this binary
symmetric channel, which is surprising because it contradicts our
intuition that we can’t get something for nothing. For those fa-
miliar with mathematical analysis, if we consider the maximum
achievable rate of communication given an error probability as a
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function Rmax(pe), then the capacity CX , of the channel X, can
be written mathematically as

CX := lim sup
pe→0

Rmax(pe) = lim
ε→0

( sup{Rmax(pe) : 0 < pe < ε} ) .

0

◦

◦

◦◦◦◦◦
1
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Figure 1.3. Probability of error (pe) versus rate of
communication (R) plot. As the probability of er-

ror approaches zero, so does the rate, in a repetition

coding scheme.

We will examine the reason for this non-zero capacity by first
learning about entropy – the measure of information.

1.2. The twelve ball problem. Consider the following problem.
You are given 12 tennis balls and a balance scale. One of the
12 balls weighs differently than the other 11. The problem is to
determine which ball it is and whether it weighs more or less than
the other 11. The challenge is to do this in as little weighings as
possible.

For our first weighing we can choose one of a few possibilities,
which will yield different outcome probability distributions. Note
that this process is modelled by a discrete random variable with
three outcomes, each with its own probability. We claim that the
correct measure of information content of an outcome in a random
variable is given by h(k) = − log2(pk) where k ∈ {1, 2, 3} indexes
one of the outcomes. Therefore in order to choose the best possible
first weighing, we should choose the one giving the largest amount
of information on average. Thus we define the Shannon entropy to
be

(1.1) H({pk}) ≡ −
∑
k

pk log(pk),

the information content of a discrete random variable. We can
interpret entropy in two complementary ways [2]:

• as a measure of our uncertainty before we learn the value
of the random variable, or

• as a measure of how much information we have gained
after we learn the value of the random variable.

To convince ourselves of the validity of our choice of information
measure, consider all the possiblities of the first weighing:

−
∑
k pk log(pk)

6 and 6 1/2 0 1/2 1.00
5 and 5 5/12 1/6 5/12 1.48
4 and 4 1/3 1/3 1/3 1.58
3 and 3 1/4 1/2 1/4 1.50

We can see that the most uniform distribution yields the largest
entropy. This is true in general for any discrete random variable.
Similarly we can compute the entropy of subsequent weighings
and choose the one with the largest entropy, in order to solve the
problem.

The rest of the problem is left as an exercise.

1.3. Capacity of the BSC. Recall the example of the binary
symmetric channel. In particular, recall that the capacity of a
channel, CBSC, is the supremum over rates at which the channel
can transmit information with arbitrarily low probability of error.
Hence no more than C bits of information can be transmitted per
channel use (no matter how small the probability of error is), so we
must lose at least 1−C bits of information in the process. That’s
precisely the entropy of the binary symmetric channel:

1− CBSC = HBSC({pk}).
This gives the capacity of the BSC:

(1.2) CBSC = 1−HBSC({pk}).
The best interpretation for entropy here is that of a measure of un-
certainty before we learn the value of the random variable. Clearly
we would like to minimize this uncertainty to be able to transmit
information reliably. Alternatively we can think of the entropy as
the amount of information we gain about the process, which we
also would like to minimize, because ideally we want to expect the
channel to act as the identity.

A more rigorous discussion of classical capacity and the proof
of (1.2), can be found in Shannon’s paper [1].

1.4. Quantum Mechanics. So far we have considered only clas-
sical information. We will now briefly introduce the motivation
for quantum information, and its mathematical description. We
consider a simple experiment that demonstrates quantum effects
that cannot be explained with classical physics.

First suppose that a photon travels from a photon emitter, to-
wards a translucent mirror (called the beam splitter), which reflects
the photon 50% of the time, otherwise the photon is not affected.
By placing two photon detectors at each end, we will observe that
each detector will go off 50% of the time as expected. The easiest
way to explain this is to imagine that the beam splitter trans-
mits or reflects the photon with probability 0.5. That is the beam
splitter acts as a binary random variable.

Now suppose that, after guiding the two possible paths, of equal
length, into another beam splitter with perfect mirrors, we put
two photon detectors on either side of the second beam splitter as
shown in Figure 1.4.

photon detector

beam splitter

Figure 1.4. Beam splitter experiment.

Experiment shows an unexpected result that 100% of the time,
the right detector will go off in this setup. Suppose we were to
predict what would happen at the detectors by modelling the beam
splitter with a random variable as mentioned. Then it is easy to
see that both detectors will fire with probability 0.5, which clearly
contradicts the experimental result.

This suggests that such a setup cannot be explained classically
and we need another mathematical model to explain this phenom-
enon. Quantum physics models this experiment correctly, with the
concepts of interference and superposition. Consider the two paths
that the photon could take given that the second beam splitter is
removed, colour coded by green and red in Figure 1.5. Now our
system can be in one of two states, which we will label with two

vectors in C2:

(
1
0

)
if the photon follows the red path and

(
0
1

)
if

the photon follows the green path.
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Figure 1.5. Beam splitter experiment.

According to quantum mechanics, the beam splitter causes the
photon to go into a superposition of the two available states. Math-
ematically a superposition is simply a complex combination of or-
thonormal state vectors, such as the ones we have given. A general
superposition is written as

α0

(
1
0

)
+ α1

(
0
1

)
,

where α0, α1 ∈ C. When we observe the photon immediately after
the first beam splitter, the detector on the red path will fire with
probability |α0|2 and the detector on the green path will fire with
probability |α1|2. Since these are the only outcomes, it must be
that |α0|2 + |α1|2 = 1.

As the photon moves through a beam splitter its state is changed
according to the following matrix transformation:

1√
2

(
1 i
i 1

)
Giving the following evolution of the state of our system as the
photon passes through the first beam splitter:

1√
2

(
1 i
i 1

)(
1
0

)
=

1√
2

(
1
i

)
=

1√
2

(
1
0

)
+

i√
2

(
0
1

)
And the second beam splitter:

1√
2

(
1 i
i 1

)
1√
2

(
1
i

)
= i

(
0
1

)
Note that if we observe the system at the end, we find it in the

state

(
0
1

)
with probability |i|2 = 1, thus correctly explaining the

experiment. The reason why we have have that 100% of the time
only one of the detectors fire, is because of interference. The pho-
ton interferes with its alternate path at the second beam splitter
in such a way that, it will follow the green path after the second
beam splitter 100% of the time. It is important to notice that the
path lengths between the two splitters are the same, otherwise the
result will be different.

The state of the photon we have just described is called a quan-
tum state, and it can be quantified with a quantum bit: a unit
vector in C2; also known as a qubit. A quantum state can be de-
scribed in terms of multiple qubits, which are written as a tensor
(or Kronecker in particular) product of constituent qubits. This
product is denoted by ⊗. Think of the tensor product as simply a
general bilinear operation.

Note that we can build a system which will generate different
classical bits with various probabilities. This is not the same as
generating qubits in superposition, and we have illustrated this
with the the beam splitter experiment. So naturally, we have an
analogue of probability distributions of bits in quantum computing.
A quantum state can be described by a probability distribution of
various qubits {(pk, φk)}k, where pk ∈ [0, 1] and φk ∈ C2. Such a
state can be precisely described by what’s called a density matrix
ρ =

∑
k pkφkφ

∗
k, where φ∗k is the adjoint (or complex conjugate

transpose) of the column vector φk. For instance if we have a

distribution{(
1

3
,

(
1
0

))
,

(
2

3
,

1√
2

(
1
0

)
+

i√
2

(
0
1

))}
,

then its corresponding density matrix will be

ρ =
1

3

(
1
0

)(
1
0

)∗
+

2

3

[
1√
2

(
1
0

)
+ i√

2

(
0
1

)][
1√
2

(
1
0

)∗
− i√

2

(
0
1

)∗]
=

1

3

(
2 1
1 1

)
.

We can clearly see that ρ is a positive semidefinite operator with
unit trace. This is true for any density matrix.

1.5. Types of Linear Operators. We will use X , Y and Z to
denote Hilbert spaces of the form Cn where n is a positive integer.
We denote the set of linear operators of the form A : X → Y
by L(X ,Y), and L(X ) for short, when Y is the same as X . Now
consider the following definitions [3].

Definition 1.1. Let A ∈ L(X ), then it is

normal if AA† = A†A,

Hermitian if A = A†.

Definition 1.2. A linear operator A is called positive semidefinite
if it’s Hermitian and has only non-negative eigenvalues.

Definition 1.3. A density operator is a positive semidefinite op-
erator with unit trace. D(X ) denotes the set of all such operators.

Remark 1.4. Notice that D(X ) are precisely the quantum states
described before. The Spectral Theorem implies that a linear op-
erator is positive semidefinite and has unit trace if and only if it
can be written as a convex combination of projectors (with unit
trace).

1.6. Quantum Information.

Definition 1.5. The classical (or Shannon) entropy of a proba-
bility distribution {px}, is defined as

H({px}) := −
∑
x

px log px

Recall that entropy measures the amount information gained
from learning the value of a random variable given a probability
distribution. So consider a classical probability distribution of pos-
sible states some piece of n-bit binary memory (for instance) can
be in: {(px, x)} where x ∈ {0, 1}n, for example{(

1

2
, 01

)
,

(
1

3
, 10

)
,

(
1

6
, 11

)}
,

then the entropy in this piece of memory is

H({px}) = − 1
2

log 1
2
− 1

3
log 1

3
− 1

6
log 1

6
∼= 0.439.

Of course, if we know the value in the memory exactly, then entropy
will be 0, since log(1) = 0.

Now imagine that our memory stores qubits...
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